MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spfw Structured version   Visualization version   GIF version

Theorem spfw 2037
Description: Weak version of sp 2178. Uses only Tarski's FOL axiom schemes. Lemma 9 of [KalishMontague] p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.)
Hypotheses
Ref Expression
spfw.1 𝜓 → ∀𝑥 ¬ 𝜓)
spfw.2 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
spfw.3 𝜑 → ∀𝑦 ¬ 𝜑)
spfw.4 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spfw (∀𝑥𝜑𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spfw
StepHypRef Expression
1 spfw.2 . . 3 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
2 spfw.1 . . 3 𝜓 → ∀𝑥 ¬ 𝜓)
3 spfw.4 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbvaliw 2010 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
6 spfw.3 . . 3 𝜑 → ∀𝑦 ¬ 𝜑)
73biimprd 247 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
87equcoms 2024 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
96, 8spimw 1975 . 2 (∀𝑦𝜓𝜑)
105, 9syl 17 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  spw  2038
  Copyright terms: Public domain W3C validator