Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > celaront | Structured version Visualization version GIF version |
Description: "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. Instance of barbari 2670. In Aristotelian notation, EAO-1: MeP and SaM therefore SoP. For example, given "No reptiles have fur", "All snakes are reptiles", and "Snakes exist", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism 2670. (Contributed by David A. Wheeler, 27-Aug-2016.) |
Ref | Expression |
---|---|
celaront.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
celaront.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
celaront.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
celaront | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celaront.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | celaront.min | . 2 ⊢ ∀𝑥(𝜒 → 𝜑) | |
3 | celaront.e | . 2 ⊢ ∃𝑥𝜒 | |
4 | 1, 2, 3 | barbari 2670 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |