| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > celaront | Structured version Visualization version GIF version | ||
| Description: "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. Instance of barbari 2664. In Aristotelian notation, EAO-1: MeP and SaM therefore SoP. For example, given "No reptiles have fur", "All snakes are reptiles", and "Snakes exist", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism 2664. (Contributed by David A. Wheeler, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| celaront.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| celaront.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
| celaront.e | ⊢ ∃𝑥𝜒 |
| Ref | Expression |
|---|---|
| celaront | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | celaront.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 2 | celaront.min | . 2 ⊢ ∀𝑥(𝜒 → 𝜑) | |
| 3 | celaront.e | . 2 ⊢ ∃𝑥𝜒 | |
| 4 | 1, 2, 3 | barbari 2664 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |