Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > barbariALT | Structured version Visualization version GIF version |
Description: Alternate proof of barbari 2670, shorter but using more axioms. See comment of dariiALT 2667. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
barbari.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
barbariALT | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
2 | barbari.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | barbari.min | . . . . 5 ⊢ ∀𝑥(𝜒 → 𝜑) | |
4 | 2, 3 | barbara 2664 | . . . 4 ⊢ ∀𝑥(𝜒 → 𝜓) |
5 | 4 | spi 2179 | . . 3 ⊢ (𝜒 → 𝜓) |
6 | 5 | ancli 548 | . 2 ⊢ (𝜒 → (𝜒 ∧ 𝜓)) |
7 | 1, 6 | eximii 1840 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |