|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > barbariALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of barbari 2668, shorter but using more axioms. See comment of dariiALT 2665. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| barbari.maj | ⊢ ∀𝑥(𝜑 → 𝜓) | 
| barbari.min | ⊢ ∀𝑥(𝜒 → 𝜑) | 
| barbari.e | ⊢ ∃𝑥𝜒 | 
| Ref | Expression | 
|---|---|
| barbariALT | ⊢ ∃𝑥(𝜒 ∧ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | barbari.e | . 2 ⊢ ∃𝑥𝜒 | |
| 2 | barbari.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 3 | barbari.min | . . . . 5 ⊢ ∀𝑥(𝜒 → 𝜑) | |
| 4 | 2, 3 | barbara 2662 | . . . 4 ⊢ ∀𝑥(𝜒 → 𝜓) | 
| 5 | 4 | spi 2183 | . . 3 ⊢ (𝜒 → 𝜓) | 
| 6 | 5 | ancli 548 | . 2 ⊢ (𝜒 → (𝜒 ∧ 𝜓)) | 
| 7 | 1, 6 | eximii 1836 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |