| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2120 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2120 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2806 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: elex2 2808 issettru 2809 issetlem 2811 elissetv 2812 eleq1w 2814 eleq2w 2815 eleq1d 2816 eleq2d 2817 eleq2dALT 2818 clabel 2877 nfeld 2906 risset 3207 elexOLD 3458 elrabi 3643 sbcimdv 3810 sbcg 3814 sbcabel 3829 ssel 3928 noel 4288 disjsn 4664 pwpw0 4765 mptpreima 6185 fi1uzind 14411 brfi1indALT 14414 ballotlem2 34497 lfuhgr3 35152 eldm3 35793 eliminable3a 36896 eliminable3b 36897 eliminable-abelv 36902 eliminable-abelab 36903 bj-denoteslem 36904 bj-issetwt 36908 bj-elsngl 37001 wl-dfclab 37629 |
| Copyright terms: Public domain | W3C validator |