| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2118 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2118 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2803 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: elex2 2805 issettru 2806 issetlem 2808 elissetv 2809 eleq1w 2811 eleq2w 2812 eleq1d 2813 eleq2d 2814 eleq2dALT 2815 clabel 2874 nfeld 2903 risset 3204 elexOLD 3460 elrabi 3645 sbcimdv 3813 sbcg 3817 sbcabel 3832 ssel 3931 noel 4291 disjsn 4665 pwpw0 4767 mptpreima 6191 fi1uzind 14432 brfi1indALT 14435 ballotlem2 34456 lfuhgr3 35092 eldm3 35733 eliminable3a 36836 eliminable3b 36837 eliminable-abelv 36842 eliminable-abelab 36843 bj-denoteslem 36844 bj-issetwt 36848 bj-elsngl 36941 wl-dfclab 37569 |
| Copyright terms: Public domain | W3C validator |