MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfclel Structured version   Visualization version   GIF version

Theorem dfclel 2817
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
dfclel (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfclel
Dummy variables 𝑦 𝑧 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleljust 2117 . 2 (𝑦𝑧 ↔ ∃𝑢(𝑢 = 𝑦𝑢𝑧))
2 cleljust 2117 . 2 (𝑡𝑡 ↔ ∃𝑣(𝑣 = 𝑡𝑣𝑡))
31, 2df-clel 2816 1 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2816
This theorem is referenced by:  elex2  2818  issettru  2819  issetlem  2821  elissetv  2822  eleq1w  2824  eleq2w  2825  eleq1d  2826  eleq2d  2827  eleq2dALT  2828  clabel  2888  nfeld  2917  risset  3233  elexOLD  3502  elrabi  3687  sbcimdv  3859  sbcg  3863  sbcabel  3878  ssel  3977  noel  4338  disjsn  4711  pwpw0  4813  mptpreima  6258  fi1uzind  14546  brfi1indALT  14549  ballotlem2  34491  lfuhgr3  35125  eldm3  35761  eliminable3a  36864  eliminable3b  36865  eliminable-abelv  36870  eliminable-abelab  36871  bj-denoteslem  36872  bj-issetwt  36876  bj-elsngl  36969  wl-dfclab  37597
  Copyright terms: Public domain W3C validator