| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2118 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2118 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2803 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: elex2 2805 issettru 2806 issetlem 2808 elissetv 2809 eleq1w 2811 eleq2w 2812 eleq1d 2813 eleq2d 2814 eleq2dALT 2815 clabel 2874 nfeld 2903 risset 3212 elexOLD 3469 elrabi 3654 sbcimdv 3822 sbcg 3826 sbcabel 3841 ssel 3940 noel 4301 disjsn 4675 pwpw0 4777 mptpreima 6211 fi1uzind 14472 brfi1indALT 14475 ballotlem2 34480 lfuhgr3 35107 eldm3 35748 eliminable3a 36851 eliminable3b 36852 eliminable-abelv 36857 eliminable-abelab 36858 bj-denoteslem 36859 bj-issetwt 36863 bj-elsngl 36956 wl-dfclab 37584 |
| Copyright terms: Public domain | W3C validator |