| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2117 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2117 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2816 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2816 |
| This theorem is referenced by: elex2 2818 issettru 2819 issetlem 2821 elissetv 2822 eleq1w 2824 eleq2w 2825 eleq1d 2826 eleq2d 2827 eleq2dALT 2828 clabel 2888 nfeld 2917 risset 3233 elexOLD 3502 elrabi 3687 sbcimdv 3859 sbcg 3863 sbcabel 3878 ssel 3977 noel 4338 disjsn 4711 pwpw0 4813 mptpreima 6258 fi1uzind 14546 brfi1indALT 14549 ballotlem2 34491 lfuhgr3 35125 eldm3 35761 eliminable3a 36864 eliminable3b 36865 eliminable-abelv 36870 eliminable-abelab 36871 bj-denoteslem 36872 bj-issetwt 36876 bj-elsngl 36969 wl-dfclab 37597 |
| Copyright terms: Public domain | W3C validator |