Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version |
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleljust 2119 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
2 | cleljust 2119 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-clel 2818 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-clel 2818 |
This theorem is referenced by: elex2 2820 elissetv 2821 elisset 2822 eleq1w 2823 eleq2w 2824 eleq1d 2825 eleq2d 2826 eleq2dALT 2827 clelabOLD 2886 clabel 2887 nfeld 2920 risset 3196 isset 3444 elex 3449 elrabi 3620 sbcimdv 3795 sbcg 3800 sbcabel 3816 ssel 3919 sselOLD 3920 noel 4270 noelOLD 4271 disjsn 4653 pwpw0 4752 pwsnOLD 4838 mptpreima 6139 fi1uzind 14207 brfi1indALT 14210 nelbOLDOLD 30811 ballotlem2 32449 lfuhgr3 33075 eldm3 33722 eliminable3a 35041 eliminable3b 35042 eliminable-abelv 35047 eliminable-abelab 35048 bj-denoteslem 35049 bj-issetwt 35053 bj-elsngl 35152 wl-dfclab 35741 |
Copyright terms: Public domain | W3C validator |