MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfclel Structured version   Visualization version   GIF version

Theorem dfclel 2819
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
dfclel (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfclel
Dummy variables 𝑦 𝑧 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleljust 2119 . 2 (𝑦𝑧 ↔ ∃𝑢(𝑢 = 𝑦𝑢𝑧))
2 cleljust 2119 . 2 (𝑡𝑡 ↔ ∃𝑣(𝑣 = 𝑡𝑣𝑡))
31, 2df-clel 2818 1 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wex 1786  wcel 2110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-clel 2818
This theorem is referenced by:  elex2  2820  elissetv  2821  elisset  2822  eleq1w  2823  eleq2w  2824  eleq1d  2825  eleq2d  2826  eleq2dALT  2827  clelabOLD  2886  clabel  2887  nfeld  2920  risset  3196  isset  3444  elex  3449  elrabi  3620  sbcimdv  3795  sbcg  3800  sbcabel  3816  ssel  3919  sselOLD  3920  noel  4270  noelOLD  4271  disjsn  4653  pwpw0  4752  pwsnOLD  4838  mptpreima  6139  fi1uzind  14207  brfi1indALT  14210  nelbOLDOLD  30811  ballotlem2  32449  lfuhgr3  33075  eldm3  33722  eliminable3a  35041  eliminable3b  35042  eliminable-abelv  35047  eliminable-abelab  35048  bj-denoteslem  35049  bj-issetwt  35053  bj-elsngl  35152  wl-dfclab  35741
  Copyright terms: Public domain W3C validator