| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2118 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2118 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2804 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 |
| This theorem is referenced by: elex2 2806 issettru 2807 issetlem 2809 elissetv 2810 eleq1w 2812 eleq2w 2813 eleq1d 2814 eleq2d 2815 eleq2dALT 2816 clabel 2875 nfeld 2904 risset 3213 elexOLD 3472 elrabi 3657 sbcimdv 3825 sbcg 3829 sbcabel 3844 ssel 3943 noel 4304 disjsn 4678 pwpw0 4780 mptpreima 6214 fi1uzind 14479 brfi1indALT 14482 ballotlem2 34487 lfuhgr3 35114 eldm3 35755 eliminable3a 36858 eliminable3b 36859 eliminable-abelv 36864 eliminable-abelab 36865 bj-denoteslem 36866 bj-issetwt 36870 bj-elsngl 36963 wl-dfclab 37591 |
| Copyright terms: Public domain | W3C validator |