Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version |
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleljust 2117 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
2 | cleljust 2117 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-clel 2817 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: elissetv 2819 elisset 2820 eleq1w 2821 eleq2w 2822 eleq1d 2823 eleq2d 2824 eleq2dALT 2825 clelabOLD 2883 clabel 2884 nfeld 2917 risset 3193 isset 3435 elex 3440 elrabi 3611 sbcimdv 3786 sbcg 3791 sbcabel 3807 ssel 3910 sselOLD 3911 noel 4261 noelOLD 4262 disjsn 4644 pwpw0 4743 pwsnOLD 4829 mptpreima 6130 fi1uzind 14139 brfi1indALT 14142 nelbOLDOLD 30718 ballotlem2 32355 lfuhgr3 32981 eldm3 33634 eliminable3a 34974 eliminable3b 34975 eliminable-abelv 34980 eliminable-abelab 34981 bj-denoteslem 34982 bj-issetwt 34986 bj-elsngl 35085 wl-dfclab 35674 |
Copyright terms: Public domain | W3C validator |