![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version |
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleljust 2117 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
2 | cleljust 2117 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-clel 2819 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: elex2 2821 issettru 2822 issetlem 2824 elissetv 2825 eleq1w 2827 eleq2w 2828 eleq1d 2829 eleq2d 2830 eleq2dALT 2831 clabel 2891 nfeld 2920 risset 3239 elexOLD 3510 elrabi 3703 sbcimdv 3878 sbcg 3883 sbcabel 3900 ssel 4002 noel 4360 noelOLD 4361 disjsn 4736 pwpw0 4838 mptpreima 6269 fi1uzind 14556 brfi1indALT 14559 ballotlem2 34453 lfuhgr3 35087 eldm3 35723 eliminable3a 36829 eliminable3b 36830 eliminable-abelv 36835 eliminable-abelab 36836 bj-denoteslem 36837 bj-issetwt 36841 bj-elsngl 36934 wl-dfclab 37550 |
Copyright terms: Public domain | W3C validator |