| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2122 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2122 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2808 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2808 |
| This theorem is referenced by: elex2 2810 issettru 2811 issetlem 2813 elissetv 2814 eleq1w 2816 eleq2w 2817 eleq1d 2818 eleq2d 2819 eleq2dALT 2820 clabel 2878 nfeld 2907 risset 3208 elexOLD 3459 elrabi 3639 sbcimdv 3806 sbcg 3810 sbcabel 3825 ssel 3924 noel 4287 disjsn 4663 pwpw0 4764 mptpreima 6190 fi1uzind 14416 brfi1indALT 14419 ballotlem2 34523 lfuhgr3 35185 eldm3 35826 eliminable3a 36928 eliminable3b 36929 eliminable-abelv 36934 eliminable-abelab 36935 bj-denoteslem 36936 bj-issetwt 36940 bj-elsngl 37033 wl-dfclab 37650 chnsubseqword 47000 |
| Copyright terms: Public domain | W3C validator |