Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version |
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleljust 2115 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
2 | cleljust 2115 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-clel 2816 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 |
This theorem is referenced by: elex2 2818 elissetv 2819 elisset 2820 eleq1w 2821 eleq2w 2822 eleq1d 2823 eleq2d 2824 eleq2dALT 2825 clelabOLD 2884 clabel 2885 nfeld 2918 risset 3194 isset 3445 elex 3450 elrabi 3618 sbcimdv 3790 sbcg 3795 sbcabel 3811 ssel 3914 sselOLD 3915 noel 4264 noelOLD 4265 disjsn 4647 pwpw0 4746 pwsnOLD 4832 mptpreima 6141 fi1uzind 14211 brfi1indALT 14214 nelbOLDOLD 30817 ballotlem2 32455 lfuhgr3 33081 eldm3 33728 eliminable3a 35047 eliminable3b 35048 eliminable-abelv 35053 eliminable-abelab 35054 bj-denoteslem 35055 bj-issetwt 35059 bj-elsngl 35158 wl-dfclab 35747 |
Copyright terms: Public domain | W3C validator |