![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version |
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleljust 2115 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
2 | cleljust 2115 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-clel 2814 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-clel 2814 |
This theorem is referenced by: elex2 2816 issettru 2817 issetlem 2819 elissetv 2820 eleq1w 2822 eleq2w 2823 eleq1d 2824 eleq2d 2825 eleq2dALT 2826 clabel 2886 nfeld 2915 risset 3231 elexOLD 3500 elrabi 3690 sbcimdv 3865 sbcg 3870 sbcabel 3887 ssel 3989 noel 4344 disjsn 4716 pwpw0 4818 mptpreima 6260 fi1uzind 14543 brfi1indALT 14546 ballotlem2 34470 lfuhgr3 35104 eldm3 35741 eliminable3a 36846 eliminable3b 36847 eliminable-abelv 36852 eliminable-abelab 36853 bj-denoteslem 36854 bj-issetwt 36858 bj-elsngl 36951 wl-dfclab 37577 |
Copyright terms: Public domain | W3C validator |