| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleljust 2117 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
| 2 | cleljust 2117 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
| 3 | 1, 2 | df-clel 2809 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 |
| This theorem is referenced by: elex2 2811 issettru 2812 issetlem 2814 elissetv 2815 eleq1w 2817 eleq2w 2818 eleq1d 2819 eleq2d 2820 eleq2dALT 2821 clabel 2881 nfeld 2910 risset 3217 elexOLD 3481 elrabi 3666 sbcimdv 3834 sbcg 3838 sbcabel 3853 ssel 3952 noel 4313 disjsn 4687 pwpw0 4789 mptpreima 6227 fi1uzind 14525 brfi1indALT 14528 ballotlem2 34521 lfuhgr3 35142 eldm3 35778 eliminable3a 36881 eliminable3b 36882 eliminable-abelv 36887 eliminable-abelab 36888 bj-denoteslem 36889 bj-issetwt 36893 bj-elsngl 36986 wl-dfclab 37614 |
| Copyright terms: Public domain | W3C validator |