![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2114 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax8 2114 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: elsb1 2116 cleljust 2117 elequ12 2126 ru0 2127 ax12wdemo 2135 cleljustALT 2370 cleljustALT2 2371 dveel1 2469 axc14 2471 sbralie 3366 unissb 4963 dftr2c 5286 axsepgfromrep 5315 nalset 5331 zfpow 5384 dtruALT2 5388 el 5457 dtruOLD 5461 zfun 7771 tz7.48lem 8497 coflton 8727 pssnn 9234 unxpdomlem1 9313 zfinf 9708 aceq1 10186 aceq0 10187 aceq2 10188 dfac3 10190 dfac5lem2 10193 dfac5lem3 10194 dfac2a 10199 kmlem4 10223 zfac 10529 nd1 10656 axextnd 10660 axrepndlem1 10661 axrepndlem2 10662 axunndlem1 10664 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axregndlem1 10671 axregnd 10673 zfcndun 10684 zfcndpow 10685 zfcndinf 10687 zfcndac 10688 fpwwe2lem11 10710 axgroth3 10900 axgroth4 10901 nqereu 10998 mdetunilem9 22647 madugsum 22670 neiptopnei 23161 2ndc1stc 23480 nrmr0reg 23778 alexsubALTlem4 24079 xrsmopn 24853 itg2cn 25818 itgcn 25900 sqff1o 27243 dya2iocuni 34248 bnj849 34901 axnulg 35068 fineqvrep 35071 erdsze 35170 untsucf 35672 untangtr 35676 dfon2lem3 35749 dfon2lem6 35752 dfon2lem7 35753 dfon2 35756 axextdist 35763 distel 35767 neibastop2lem 36326 bj-nfeel2 36820 prtlem5 38816 prtlem13 38824 prtlem16 38825 ax12el 38898 pw2f1ocnv 42994 aomclem8 43018 onsupmaxb 43200 grumnud 44255 dfnbgr6 47729 lcosslsp 48167 |
Copyright terms: Public domain | W3C validator |