| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8 2115 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax8 2115 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elsb1 2117 cleljust 2118 elequ12 2127 ru0 2128 ax12wdemo 2136 cleljustALT 2362 cleljustALT2 2363 dveel1 2459 axc14 2461 sbralie 3326 sbralieOLD 3328 unissb 4903 dftr2c 5217 axsepgfromrep 5249 nalset 5268 zfpow 5321 dtruALT2 5325 el 5397 dtruOLD 5401 zfun 7712 tz7.48lem 8409 coflton 8635 pssnn 9132 unxpdomlem1 9197 zfinf 9592 aceq1 10070 aceq0 10071 aceq2 10072 dfac3 10074 dfac5lem2 10077 dfac5lem3 10078 dfac2a 10083 kmlem4 10107 zfac 10413 nd1 10540 axextnd 10544 axrepndlem1 10545 axrepndlem2 10546 axunndlem1 10548 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axregndlem1 10555 axregnd 10557 zfcndun 10568 zfcndpow 10569 zfcndinf 10571 zfcndac 10572 fpwwe2lem11 10594 axgroth3 10784 axgroth4 10785 nqereu 10882 mdetunilem9 22507 madugsum 22530 neiptopnei 23019 2ndc1stc 23338 nrmr0reg 23636 alexsubALTlem4 23937 xrsmopn 24701 itg2cn 25664 itgcn 25746 sqff1o 27092 dya2iocuni 34274 bnj849 34915 axnulg 35082 fineqvrep 35085 erdsze 35189 untsucf 35697 untangtr 35701 dfon2lem3 35773 dfon2lem6 35776 dfon2lem7 35777 dfon2 35780 axextdist 35787 distel 35791 neibastop2lem 36348 bj-nfeel2 36842 prtlem5 38853 prtlem13 38861 prtlem16 38862 ax12el 38935 pw2f1ocnv 43026 aomclem8 43050 onsupmaxb 43228 grumnud 44275 dfnbgr6 47857 lcosslsp 48427 |
| Copyright terms: Public domain | W3C validator |