Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2109 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax8 2109 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1779 |
This theorem is referenced by: elsb1 2111 cleljust 2112 ax12wdemo 2128 cleljustALT 2359 cleljustALT2 2360 dveel1 2458 axc14 2460 unissb 4878 dftr2c 5200 axsepgfromrep 5229 nalset 5245 zfpow 5297 dtruALT2 5301 el 5369 dtruOLD 5371 zfun 7622 tz7.48lem 8307 pssnn 8998 unxpdomlem1 9080 pssnnOLD 9095 zfinf 9455 aceq1 9933 aceq0 9934 aceq2 9935 dfac3 9937 dfac5lem2 9940 dfac5lem3 9941 dfac2a 9945 kmlem4 9969 zfac 10276 nd1 10403 axextnd 10407 axrepndlem1 10408 axrepndlem2 10409 axunndlem1 10411 axunnd 10412 axpowndlem2 10414 axpowndlem3 10415 axpowndlem4 10416 axregndlem1 10418 axregnd 10420 zfcndun 10431 zfcndpow 10432 zfcndinf 10434 zfcndac 10435 fpwwe2lem11 10457 axgroth3 10647 axgroth4 10648 nqereu 10745 mdetunilem9 21832 madugsum 21855 neiptopnei 22346 2ndc1stc 22665 nrmr0reg 22963 alexsubALTlem4 23264 xrsmopn 24038 itg2cn 24991 itgcn 25072 sqff1o 26394 dya2iocuni 32346 bnj849 33001 fineqvrep 33160 erdsze 33260 untsucf 33747 untangtr 33751 dfon2lem3 33855 dfon2lem6 33858 dfon2lem7 33859 dfon2 33862 axextdist 33869 distel 33873 neibastop2lem 34608 bj-elequ12 34919 bj-nfeel2 35096 bj-ru0 35189 prtlem5 37084 prtlem13 37092 prtlem16 37093 ax12el 37166 pw2f1ocnv 41068 aomclem8 41095 grumnud 42130 lcosslsp 46036 |
Copyright terms: Public domain | W3C validator |