Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2114 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax8 2114 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: elsb1 2116 cleljust 2117 ax12wdemo 2133 cleljustALT 2362 cleljustALT2 2363 dveel1 2461 axc14 2463 axsepgfromrep 5216 nalset 5232 zfpow 5284 dtru 5288 zfun 7567 tz7.48lem 8242 pssnn 8913 unxpdomlem1 8956 pssnnOLD 8969 zfinf 9327 aceq1 9804 aceq0 9805 aceq2 9806 dfac3 9808 dfac5lem2 9811 dfac5lem3 9812 dfac2a 9816 kmlem4 9840 zfac 10147 nd1 10274 axextnd 10278 axrepndlem1 10279 axrepndlem2 10280 axunndlem1 10282 axunnd 10283 axpowndlem2 10285 axpowndlem3 10286 axpowndlem4 10287 axregndlem1 10289 axregnd 10291 zfcndun 10302 zfcndpow 10303 zfcndinf 10305 zfcndac 10306 fpwwe2lem11 10328 axgroth3 10518 axgroth4 10519 nqereu 10616 mdetunilem9 21677 madugsum 21700 neiptopnei 22191 2ndc1stc 22510 nrmr0reg 22808 alexsubALTlem4 23109 xrsmopn 23881 itg2cn 24833 itgcn 24914 sqff1o 26236 dya2iocuni 32150 bnj849 32805 fineqvrep 32964 erdsze 33064 untsucf 33551 untangtr 33555 dfon2lem3 33667 dfon2lem6 33670 dfon2lem7 33671 dfon2 33674 axextdist 33681 distel 33685 neibastop2lem 34476 bj-elequ12 34787 bj-nfeel2 34965 bj-ru0 35058 prtlem5 36801 prtlem13 36809 prtlem16 36810 ax12el 36883 pw2f1ocnv 40775 aomclem8 40802 grumnud 41793 lcosslsp 45667 |
Copyright terms: Public domain | W3C validator |