Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2113 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax8 2113 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: elsb1 2115 cleljust 2116 ax12wdemo 2132 cleljustALT 2363 cleljustALT2 2364 dveel1 2462 axc14 2464 axsepgfromrep 5222 nalset 5238 zfpow 5290 dtruALT2 5294 el 5358 dtru 5360 zfun 7598 tz7.48lem 8281 pssnn 8960 unxpdomlem1 9036 pssnnOLD 9049 zfinf 9406 aceq1 9882 aceq0 9883 aceq2 9884 dfac3 9886 dfac5lem2 9889 dfac5lem3 9890 dfac2a 9894 kmlem4 9918 zfac 10225 nd1 10352 axextnd 10356 axrepndlem1 10357 axrepndlem2 10358 axunndlem1 10360 axunnd 10361 axpowndlem2 10363 axpowndlem3 10364 axpowndlem4 10365 axregndlem1 10367 axregnd 10369 zfcndun 10380 zfcndpow 10381 zfcndinf 10383 zfcndac 10384 fpwwe2lem11 10406 axgroth3 10596 axgroth4 10597 nqereu 10694 mdetunilem9 21778 madugsum 21801 neiptopnei 22292 2ndc1stc 22611 nrmr0reg 22909 alexsubALTlem4 23210 xrsmopn 23984 itg2cn 24937 itgcn 25018 sqff1o 26340 dya2iocuni 32259 bnj849 32914 fineqvrep 33073 erdsze 33173 untsucf 33660 untangtr 33664 dfon2lem3 33770 dfon2lem6 33773 dfon2lem7 33774 dfon2 33777 axextdist 33784 distel 33788 neibastop2lem 34558 bj-elequ12 34869 bj-nfeel2 35047 bj-ru0 35140 prtlem5 36881 prtlem13 36889 prtlem16 36890 ax12el 36963 pw2f1ocnv 40866 aomclem8 40893 grumnud 41911 lcosslsp 45790 |
Copyright terms: Public domain | W3C validator |