| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8 2115 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax8 2115 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elsb1 2117 cleljust 2118 elequ12 2127 ru0 2128 ax12wdemo 2136 cleljustALT 2362 cleljustALT2 2363 dveel1 2459 axc14 2461 sbralie 3317 sbralieOLD 3319 unissb 4893 dftr2c 5205 axsepgfromrep 5236 nalset 5255 zfpow 5308 dtruALT2 5312 el 5384 dtruOLD 5388 zfun 7676 tz7.48lem 8370 coflton 8596 pssnn 9092 unxpdomlem1 9155 elirrv 9508 zfinf 9554 aceq1 10030 aceq0 10031 aceq2 10032 dfac3 10034 dfac5lem2 10037 dfac5lem3 10038 dfac2a 10043 kmlem4 10067 zfac 10373 nd1 10500 axextnd 10504 axrepndlem1 10505 axrepndlem2 10506 axunndlem1 10508 axunnd 10509 axpowndlem2 10511 axpowndlem3 10512 axpowndlem4 10513 axregndlem1 10515 axregnd 10517 zfcndun 10528 zfcndpow 10529 zfcndinf 10531 zfcndac 10532 fpwwe2lem11 10554 axgroth3 10744 axgroth4 10745 nqereu 10842 mdetunilem9 22523 madugsum 22546 neiptopnei 23035 2ndc1stc 23354 nrmr0reg 23652 alexsubALTlem4 23953 xrsmopn 24717 itg2cn 25680 itgcn 25762 sqff1o 27108 dya2iocuni 34250 bnj849 34891 axnulg 35058 axreg 35061 fineqvrep 35069 erdsze 35174 untsucf 35682 untangtr 35686 dfon2lem3 35758 dfon2lem6 35761 dfon2lem7 35762 dfon2 35765 axextdist 35772 distel 35776 neibastop2lem 36333 bj-nfeel2 36827 prtlem5 38838 prtlem13 38846 prtlem16 38847 ax12el 38920 pw2f1ocnv 43010 aomclem8 43034 onsupmaxb 43212 grumnud 44259 dfnbgr6 47842 lcosslsp 48424 |
| Copyright terms: Public domain | W3C validator |