| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8 2119 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax8 2119 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: elsb1 2121 cleljust 2122 elequ12 2131 ru0 2132 ax12wdemo 2140 cleljustALT 2366 cleljustALT2 2367 dveel1 2463 axc14 2465 sbralie 3319 sbralieOLD 3321 unissb 4891 dftr2c 5203 axsepgfromrep 5234 nalset 5253 zfpow 5306 dtruALT2 5310 el 5382 zfun 7675 tz7.48lem 8366 coflton 8592 pssnn 9085 unxpdomlem1 9147 elirrv 9490 zfinf 9536 aceq1 10015 aceq0 10016 aceq2 10017 dfac3 10019 dfac5lem2 10022 dfac5lem3 10023 dfac2a 10028 kmlem4 10052 zfac 10358 nd1 10485 axextnd 10489 axrepndlem1 10490 axrepndlem2 10491 axunndlem1 10493 axunnd 10494 axpowndlem2 10496 axpowndlem3 10497 axpowndlem4 10498 axregndlem1 10500 axregnd 10502 zfcndun 10513 zfcndpow 10514 zfcndinf 10516 zfcndac 10517 fpwwe2lem11 10539 axgroth3 10729 axgroth4 10730 nqereu 10827 mdetunilem9 22536 madugsum 22559 neiptopnei 23048 2ndc1stc 23367 nrmr0reg 23665 alexsubALTlem4 23966 xrsmopn 24729 itg2cn 25692 itgcn 25774 sqff1o 27120 dya2iocuni 34317 bnj849 34958 axnulg 35140 axreg 35146 fineqvrep 35158 erdsze 35267 untsucf 35775 untangtr 35779 dfon2lem3 35848 dfon2lem6 35851 dfon2lem7 35852 dfon2 35855 axextdist 35862 distel 35866 neibastop2lem 36425 bj-nfeel2 36919 prtlem5 38979 prtlem13 38987 prtlem16 38988 ax12el 39061 pw2f1ocnv 43154 aomclem8 43178 onsupmaxb 43356 grumnud 44403 dfnbgr6 47981 lcosslsp 48563 |
| Copyright terms: Public domain | W3C validator |