| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8 2114 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax8 2114 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elsb1 2116 cleljust 2117 elequ12 2126 ru0 2127 ax12wdemo 2135 cleljustALT 2366 cleljustALT2 2367 dveel1 2465 axc14 2467 sbralie 3337 unissb 4915 dftr2c 5232 axsepgfromrep 5264 nalset 5283 zfpow 5336 dtruALT2 5340 el 5412 dtruOLD 5416 zfun 7730 tz7.48lem 8455 coflton 8683 pssnn 9182 unxpdomlem1 9258 zfinf 9653 aceq1 10131 aceq0 10132 aceq2 10133 dfac3 10135 dfac5lem2 10138 dfac5lem3 10139 dfac2a 10144 kmlem4 10168 zfac 10474 nd1 10601 axextnd 10605 axrepndlem1 10606 axrepndlem2 10607 axunndlem1 10609 axunnd 10610 axpowndlem2 10612 axpowndlem3 10613 axpowndlem4 10614 axregndlem1 10616 axregnd 10618 zfcndun 10629 zfcndpow 10630 zfcndinf 10632 zfcndac 10633 fpwwe2lem11 10655 axgroth3 10845 axgroth4 10846 nqereu 10943 mdetunilem9 22558 madugsum 22581 neiptopnei 23070 2ndc1stc 23389 nrmr0reg 23687 alexsubALTlem4 23988 xrsmopn 24752 itg2cn 25716 itgcn 25798 sqff1o 27144 dya2iocuni 34315 bnj849 34956 axnulg 35123 fineqvrep 35126 erdsze 35224 untsucf 35727 untangtr 35731 dfon2lem3 35803 dfon2lem6 35806 dfon2lem7 35807 dfon2 35810 axextdist 35817 distel 35821 neibastop2lem 36378 bj-nfeel2 36872 prtlem5 38878 prtlem13 38886 prtlem16 38887 ax12el 38960 pw2f1ocnv 43061 aomclem8 43085 onsupmaxb 43263 grumnud 44310 dfnbgr6 47870 lcosslsp 48414 |
| Copyright terms: Public domain | W3C validator |