![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2112 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax8 2112 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 2017 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 |
This theorem is referenced by: elsb1 2114 cleljust 2115 elequ12 2124 ru0 2125 ax12wdemo 2133 cleljustALT 2365 cleljustALT2 2366 dveel1 2464 axc14 2466 sbralie 3356 unissb 4944 dftr2c 5268 axsepgfromrep 5300 nalset 5319 zfpow 5372 dtruALT2 5376 el 5448 dtruOLD 5452 zfun 7755 tz7.48lem 8480 coflton 8708 pssnn 9207 unxpdomlem1 9284 zfinf 9677 aceq1 10155 aceq0 10156 aceq2 10157 dfac3 10159 dfac5lem2 10162 dfac5lem3 10163 dfac2a 10168 kmlem4 10192 zfac 10498 nd1 10625 axextnd 10629 axrepndlem1 10630 axrepndlem2 10631 axunndlem1 10633 axunnd 10634 axpowndlem2 10636 axpowndlem3 10637 axpowndlem4 10638 axregndlem1 10640 axregnd 10642 zfcndun 10653 zfcndpow 10654 zfcndinf 10656 zfcndac 10657 fpwwe2lem11 10679 axgroth3 10869 axgroth4 10870 nqereu 10967 mdetunilem9 22642 madugsum 22665 neiptopnei 23156 2ndc1stc 23475 nrmr0reg 23773 alexsubALTlem4 24074 xrsmopn 24848 itg2cn 25813 itgcn 25895 sqff1o 27240 dya2iocuni 34265 bnj849 34918 axnulg 35085 fineqvrep 35088 erdsze 35187 untsucf 35690 untangtr 35694 dfon2lem3 35767 dfon2lem6 35770 dfon2lem7 35771 dfon2 35774 axextdist 35781 distel 35785 neibastop2lem 36343 bj-nfeel2 36837 prtlem5 38842 prtlem13 38850 prtlem16 38851 ax12el 38924 pw2f1ocnv 43026 aomclem8 43050 onsupmaxb 43228 grumnud 44282 dfnbgr6 47781 lcosslsp 48284 |
Copyright terms: Public domain | W3C validator |