| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8 2115 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax8 2115 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elsb1 2117 cleljust 2118 elequ12 2127 ru0 2128 ax12wdemo 2136 cleljustALT 2363 cleljustALT2 2364 dveel1 2460 axc14 2462 sbralie 3328 sbralieOLD 3330 unissb 4906 dftr2c 5220 axsepgfromrep 5252 nalset 5271 zfpow 5324 dtruALT2 5328 el 5400 dtruOLD 5404 zfun 7715 tz7.48lem 8412 coflton 8638 pssnn 9138 unxpdomlem1 9204 zfinf 9599 aceq1 10077 aceq0 10078 aceq2 10079 dfac3 10081 dfac5lem2 10084 dfac5lem3 10085 dfac2a 10090 kmlem4 10114 zfac 10420 nd1 10547 axextnd 10551 axrepndlem1 10552 axrepndlem2 10553 axunndlem1 10555 axunnd 10556 axpowndlem2 10558 axpowndlem3 10559 axpowndlem4 10560 axregndlem1 10562 axregnd 10564 zfcndun 10575 zfcndpow 10576 zfcndinf 10578 zfcndac 10579 fpwwe2lem11 10601 axgroth3 10791 axgroth4 10792 nqereu 10889 mdetunilem9 22514 madugsum 22537 neiptopnei 23026 2ndc1stc 23345 nrmr0reg 23643 alexsubALTlem4 23944 xrsmopn 24708 itg2cn 25671 itgcn 25753 sqff1o 27099 dya2iocuni 34281 bnj849 34922 axnulg 35089 fineqvrep 35092 erdsze 35196 untsucf 35704 untangtr 35708 dfon2lem3 35780 dfon2lem6 35783 dfon2lem7 35784 dfon2 35787 axextdist 35794 distel 35798 neibastop2lem 36355 bj-nfeel2 36849 prtlem5 38860 prtlem13 38868 prtlem16 38869 ax12el 38942 pw2f1ocnv 43033 aomclem8 43057 onsupmaxb 43235 grumnud 44282 dfnbgr6 47861 lcosslsp 48431 |
| Copyright terms: Public domain | W3C validator |