| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8 2117 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax8 2117 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: elsb1 2119 cleljust 2120 elequ12 2129 ru0 2130 ax12wdemo 2138 cleljustALT 2364 cleljustALT2 2365 dveel1 2461 axc14 2463 sbralie 3318 sbralieOLD 3320 unissb 4891 dftr2c 5201 axsepgfromrep 5232 nalset 5251 zfpow 5304 dtruALT2 5308 el 5380 zfun 7669 tz7.48lem 8360 coflton 8586 pssnn 9078 unxpdomlem1 9140 elirrv 9483 zfinf 9529 aceq1 10005 aceq0 10006 aceq2 10007 dfac3 10009 dfac5lem2 10012 dfac5lem3 10013 dfac2a 10018 kmlem4 10042 zfac 10348 nd1 10475 axextnd 10479 axrepndlem1 10480 axrepndlem2 10481 axunndlem1 10483 axunnd 10484 axpowndlem2 10486 axpowndlem3 10487 axpowndlem4 10488 axregndlem1 10490 axregnd 10492 zfcndun 10503 zfcndpow 10504 zfcndinf 10506 zfcndac 10507 fpwwe2lem11 10529 axgroth3 10719 axgroth4 10720 nqereu 10817 mdetunilem9 22533 madugsum 22556 neiptopnei 23045 2ndc1stc 23364 nrmr0reg 23662 alexsubALTlem4 23963 xrsmopn 24726 itg2cn 25689 itgcn 25771 sqff1o 27117 dya2iocuni 34291 bnj849 34932 axnulg 35110 axreg 35113 fineqvrep 35125 erdsze 35234 untsucf 35742 untangtr 35746 dfon2lem3 35818 dfon2lem6 35821 dfon2lem7 35822 dfon2 35825 axextdist 35832 distel 35836 neibastop2lem 36393 bj-nfeel2 36887 prtlem5 38898 prtlem13 38906 prtlem16 38907 ax12el 38980 pw2f1ocnv 43069 aomclem8 43093 onsupmaxb 43271 grumnud 44318 dfnbgr6 47887 lcosslsp 48469 |
| Copyright terms: Public domain | W3C validator |