![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elequ1 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2112 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax8 2112 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 2023 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: elsb1 2114 cleljust 2115 ax12wdemo 2131 cleljustALT 2361 cleljustALT2 2362 dveel1 2460 axc14 2462 sbralie 3354 unissb 4943 dftr2c 5268 axsepgfromrep 5297 nalset 5313 zfpow 5364 dtruALT2 5368 el 5437 dtruOLD 5441 zfun 7725 tz7.48lem 8440 coflton 8669 pssnn 9167 unxpdomlem1 9249 pssnnOLD 9264 zfinf 9633 aceq1 10111 aceq0 10112 aceq2 10113 dfac3 10115 dfac5lem2 10118 dfac5lem3 10119 dfac2a 10123 kmlem4 10147 zfac 10454 nd1 10581 axextnd 10585 axrepndlem1 10586 axrepndlem2 10587 axunndlem1 10589 axunnd 10590 axpowndlem2 10592 axpowndlem3 10593 axpowndlem4 10594 axregndlem1 10596 axregnd 10598 zfcndun 10609 zfcndpow 10610 zfcndinf 10612 zfcndac 10613 fpwwe2lem11 10635 axgroth3 10825 axgroth4 10826 nqereu 10923 mdetunilem9 22121 madugsum 22144 neiptopnei 22635 2ndc1stc 22954 nrmr0reg 23252 alexsubALTlem4 23553 xrsmopn 24327 itg2cn 25280 itgcn 25361 sqff1o 26683 dya2iocuni 33277 bnj849 33931 fineqvrep 34090 erdsze 34188 untsucf 34674 untangtr 34678 dfon2lem3 34752 dfon2lem6 34755 dfon2lem7 34756 dfon2 34759 axextdist 34766 distel 34770 neibastop2lem 35240 bj-elequ12 35551 bj-nfeel2 35728 bj-ru0 35818 prtlem5 37725 prtlem13 37733 prtlem16 37734 ax12el 37807 pw2f1ocnv 41766 aomclem8 41793 onsupmaxb 41978 grumnud 43035 lcosslsp 47109 |
Copyright terms: Public domain | W3C validator |