MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bicom1 Structured version   Visualization version   GIF version

Theorem bicom1 221
Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012.)
Assertion
Ref Expression
bicom1 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem bicom1
StepHypRef Expression
1 biimpr 220 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 biimp 215 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2impbid 212 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bicom  222  bicomi  224  nanass  1509  rexsng  4675  axpow3  5367  xpord3inddlem  8180  nummin  35106  bicomdALT  42680  frege55aid  43883  frege55lem2a  43885  bisaiaisb  46930  confun4  46959  confun5  46960  ichnfim  47456
  Copyright terms: Public domain W3C validator