| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom1 | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| bicom1 | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 220 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | biimp 215 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicom 222 bicomi 224 nanass 1510 rexsng 4657 axpow3 5343 xpord3inddlem 8158 nummin 35127 bicomdALT 42655 frege55aid 43856 frege55lem2a 43858 bisaiaisb 46909 confun4 46938 confun5 46939 ichnfim 47445 |
| Copyright terms: Public domain | W3C validator |