|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bicom1 | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| bicom1 | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimpr 220 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | biimp 215 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: bicom 222 bicomi 224 nanass 1509 rexsng 4675 axpow3 5367 xpord3inddlem 8180 nummin 35106 bicomdALT 42680 frege55aid 43883 frege55lem2a 43885 bisaiaisb 46930 confun4 46959 confun5 46960 ichnfim 47456 | 
| Copyright terms: Public domain | W3C validator |