MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.4 Structured version   Visualization version   GIF version

Theorem pm3.4 810
Description: Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
Assertion
Ref Expression
pm3.4 ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem pm3.4
StepHypRef Expression
1 simpr 488 . 2 ((𝜑𝜓) → 𝜓)
21a1d 25 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  cases2ALT  1048  bj-animbi  34377  bj-sbsb  34651  jabtaib  43966  confun4  43976  plvcofphax  43981  afvres  44197
  Copyright terms: Public domain W3C validator