MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.4 Structured version   Visualization version   GIF version

Theorem pm3.4 808
Description: Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
Assertion
Ref Expression
pm3.4 ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem pm3.4
StepHypRef Expression
1 simpr 487 . 2 ((𝜑𝜓) → 𝜓)
21a1d 25 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-an 399
This theorem is referenced by:  cases2ALT  1043  sbequ1OLD  2520  sbequ1ALT  2579  bj-animbi  33902  bj-sbsb  34168  jabtaib  43316  confun4  43326  plvcofphax  43331  afvres  43519
  Copyright terms: Public domain W3C validator