| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > confun5 | Structured version Visualization version GIF version | ||
| Description: An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| Ref | Expression |
|---|---|
| confun5.1 | ⊢ 𝜑 |
| confun5.2 | ⊢ ((𝜑 → 𝜓) → 𝜓) |
| confun5.3 | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| confun5.4 | ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) |
| confun5.5 | ⊢ (𝜏 ↔ (𝜒 → 𝜃)) |
| confun5.6 | ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) |
| confun5.7 | ⊢ 𝜓 |
| confun5.8 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| confun5 | ⊢ (𝜒 → (𝜂 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | confun5.1 | . . . . . 6 ⊢ 𝜑 | |
| 2 | confun5.7 | . . . . . . 7 ⊢ 𝜓 | |
| 3 | confun5.3 | . . . . . . 7 ⊢ (𝜓 → (𝜑 → 𝜒)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (𝜑 → 𝜒) |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ 𝜒 |
| 6 | 5 | atnaiana 46869 | . . . 4 ⊢ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) |
| 7 | confun5.6 | . . . . . 6 ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) | |
| 8 | bicom1 221 | . . . . . 6 ⊢ ((𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) → (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ 𝜂)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ 𝜂) |
| 10 | 9 | biimpi 216 | . . . 4 ⊢ (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) → 𝜂) |
| 11 | 6, 10 | ax-mp 5 | . . 3 ⊢ 𝜂 |
| 12 | confun5.8 | . . . 4 ⊢ (𝜒 → 𝜃) | |
| 13 | confun5.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝜒 → 𝜃)) | |
| 14 | bicom1 221 | . . . . . 6 ⊢ ((𝜏 ↔ (𝜒 → 𝜃)) → ((𝜒 → 𝜃) ↔ 𝜏)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝜒 → 𝜃) ↔ 𝜏) |
| 16 | 15 | biimpi 216 | . . . 4 ⊢ ((𝜒 → 𝜃) → 𝜏) |
| 17 | 12, 16 | ax-mp 5 | . . 3 ⊢ 𝜏 |
| 18 | 11, 17 | 2th 264 | . 2 ⊢ (𝜂 ↔ 𝜏) |
| 19 | ax-1 6 | . 2 ⊢ ((𝜂 ↔ 𝜏) → (𝜒 → (𝜂 ↔ 𝜏))) | |
| 20 | 18, 19 | ax-mp 5 | 1 ⊢ (𝜒 → (𝜂 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |