MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  consensus Structured version   Visualization version   GIF version

Theorem consensus 1050
Description: The consensus theorem. This theorem and its dual (with and interchanged) are commonly used in computer logic design to eliminate redundant terms from Boolean expressions. Specifically, we prove that the term (𝜓𝜒) on the left-hand side is redundant. (Contributed by NM, 16-May-2003.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 20-Jan-2013.)
Assertion
Ref Expression
consensus ((((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))

Proof of Theorem consensus
StepHypRef Expression
1 id 22 . . 3 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 orc 864 . . . . 5 ((𝜑𝜓) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
32adantrr 714 . . . 4 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
4 olc 865 . . . . 5 ((¬ 𝜑𝜒) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
54adantrl 713 . . . 4 ((¬ 𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
63, 5pm2.61ian 809 . . 3 ((𝜓𝜒) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
71, 6jaoi 854 . 2 ((((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
8 orc 864 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) → (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ∨ (𝜓𝜒)))
97, 8impbii 208 1 ((((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator