MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.42 Structured version   Visualization version   GIF version

Theorem pm4.42 1049
Description: Theorem *4.42 of [WhiteheadRussell] p. 119. See also ifpid 1073. (Contributed by Roy F. Longton, 21-Jun-2005.)
Assertion
Ref Expression
pm4.42 (𝜑 ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))

Proof of Theorem pm4.42
StepHypRef Expression
1 dedlema 1041 . 2 (𝜓 → (𝜑 ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓))))
2 dedlemb 1042 . 2 𝜓 → (𝜑 ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓))))
31, 2pm2.61i 185 1 (𝜑 ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845
This theorem is referenced by:  inundif  4375  elim2ifim  30410  smatrcl  31267  expdioph  40337
  Copyright terms: Public domain W3C validator