Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.42 | Structured version Visualization version GIF version |
Description: Theorem *4.42 of [WhiteheadRussell] p. 119. See also ifpid 1073. (Contributed by Roy F. Longton, 21-Jun-2005.) |
Ref | Expression |
---|---|
pm4.42 | ⊢ (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedlema 1041 | . 2 ⊢ (𝜓 → (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))) | |
2 | dedlemb 1042 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))) | |
3 | 1, 2 | pm2.61i 185 | 1 ⊢ (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 |
This theorem is referenced by: inundif 4375 elim2ifim 30410 smatrcl 31267 expdioph 40337 |
Copyright terms: Public domain | W3C validator |