|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm4.42 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.42 of [WhiteheadRussell] p. 119. See also ifpid 1077. (Contributed by Roy F. Longton, 21-Jun-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.42 | ⊢ (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dedlema 1046 | . 2 ⊢ (𝜓 → (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))) | |
| 2 | dedlemb 1047 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)))) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: inundif 4479 elim2ifim 32558 smatrcl 33795 expdioph 43035 | 
| Copyright terms: Public domain | W3C validator |