MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrnegex Structured version   Visualization version   GIF version

Theorem axrnegex 11115
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11139. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrnegex (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrnegex
StepHypRef Expression
1 elreal2 11085 . . . . 5 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
21simplbi 497 . . . 4 (𝐴 ∈ ℝ → (1st𝐴) ∈ R)
3 m1r 11035 . . . 4 -1RR
4 mulclsr 11037 . . . 4 (((1st𝐴) ∈ R ∧ -1RR) → ((1st𝐴) ·R -1R) ∈ R)
52, 3, 4sylancl 586 . . 3 (𝐴 ∈ ℝ → ((1st𝐴) ·R -1R) ∈ R)
6 opelreal 11083 . . 3 (⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ ↔ ((1st𝐴) ·R -1R) ∈ R)
75, 6sylibr 234 . 2 (𝐴 ∈ ℝ → ⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ)
81simprbi 496 . . . 4 (𝐴 ∈ ℝ → 𝐴 = ⟨(1st𝐴), 0R⟩)
98oveq1d 7402 . . 3 (𝐴 ∈ ℝ → (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩))
10 addresr 11091 . . . 4 (((1st𝐴) ∈ R ∧ ((1st𝐴) ·R -1R) ∈ R) → (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩) = ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩)
112, 5, 10syl2anc 584 . . 3 (𝐴 ∈ ℝ → (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩) = ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩)
12 pn0sr 11054 . . . . . 6 ((1st𝐴) ∈ R → ((1st𝐴) +R ((1st𝐴) ·R -1R)) = 0R)
1312opeq1d 4843 . . . . 5 ((1st𝐴) ∈ R → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = ⟨0R, 0R⟩)
14 df-0 11075 . . . . 5 0 = ⟨0R, 0R
1513, 14eqtr4di 2782 . . . 4 ((1st𝐴) ∈ R → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = 0)
162, 15syl 17 . . 3 (𝐴 ∈ ℝ → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = 0)
179, 11, 163eqtrd 2768 . 2 (𝐴 ∈ ℝ → (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0)
18 oveq2 7395 . . . 4 (𝑥 = ⟨((1st𝐴) ·R -1R), 0R⟩ → (𝐴 + 𝑥) = (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩))
1918eqeq1d 2731 . . 3 (𝑥 = ⟨((1st𝐴) ·R -1R), 0R⟩ → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0))
2019rspcev 3588 . 2 ((⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ ∧ (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
217, 17, 20syl2anc 584 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  cop 4595  cfv 6511  (class class class)co 7387  1st c1st 7966  Rcnr 10818  0Rc0r 10819  -1Rcm1r 10821   +R cplr 10822   ·R cmr 10823  cr 11067  0cc0 11068   + caddc 11071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-1p 10935  df-plp 10936  df-mp 10937  df-ltp 10938  df-enr 11008  df-nr 11009  df-plr 11010  df-mr 11011  df-0r 11013  df-1r 11014  df-m1r 11015  df-c 11074  df-0 11075  df-r 11078  df-add 11079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator