MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrnegex Structured version   Visualization version   GIF version

Theorem axrnegex 11154
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11178. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrnegex (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrnegex
StepHypRef Expression
1 elreal2 11124 . . . . 5 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
21simplbi 497 . . . 4 (𝐴 ∈ ℝ → (1st𝐴) ∈ R)
3 m1r 11074 . . . 4 -1RR
4 mulclsr 11076 . . . 4 (((1st𝐴) ∈ R ∧ -1RR) → ((1st𝐴) ·R -1R) ∈ R)
52, 3, 4sylancl 585 . . 3 (𝐴 ∈ ℝ → ((1st𝐴) ·R -1R) ∈ R)
6 opelreal 11122 . . 3 (⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ ↔ ((1st𝐴) ·R -1R) ∈ R)
75, 6sylibr 233 . 2 (𝐴 ∈ ℝ → ⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ)
81simprbi 496 . . . 4 (𝐴 ∈ ℝ → 𝐴 = ⟨(1st𝐴), 0R⟩)
98oveq1d 7417 . . 3 (𝐴 ∈ ℝ → (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩))
10 addresr 11130 . . . 4 (((1st𝐴) ∈ R ∧ ((1st𝐴) ·R -1R) ∈ R) → (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩) = ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩)
112, 5, 10syl2anc 583 . . 3 (𝐴 ∈ ℝ → (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩) = ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩)
12 pn0sr 11093 . . . . . 6 ((1st𝐴) ∈ R → ((1st𝐴) +R ((1st𝐴) ·R -1R)) = 0R)
1312opeq1d 4872 . . . . 5 ((1st𝐴) ∈ R → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = ⟨0R, 0R⟩)
14 df-0 11114 . . . . 5 0 = ⟨0R, 0R
1513, 14eqtr4di 2782 . . . 4 ((1st𝐴) ∈ R → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = 0)
162, 15syl 17 . . 3 (𝐴 ∈ ℝ → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = 0)
179, 11, 163eqtrd 2768 . 2 (𝐴 ∈ ℝ → (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0)
18 oveq2 7410 . . . 4 (𝑥 = ⟨((1st𝐴) ·R -1R), 0R⟩ → (𝐴 + 𝑥) = (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩))
1918eqeq1d 2726 . . 3 (𝑥 = ⟨((1st𝐴) ·R -1R), 0R⟩ → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0))
2019rspcev 3604 . 2 ((⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ ∧ (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
217, 17, 20syl2anc 583 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wrex 3062  cop 4627  cfv 6534  (class class class)co 7402  1st c1st 7967  Rcnr 10857  0Rc0r 10858  -1Rcm1r 10860   +R cplr 10861   ·R cmr 10862  cr 11106  0cc0 11107   + caddc 11110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8700  df-ec 8702  df-qs 8706  df-ni 10864  df-pli 10865  df-mi 10866  df-lti 10867  df-plpq 10900  df-mpq 10901  df-ltpq 10902  df-enq 10903  df-nq 10904  df-erq 10905  df-plq 10906  df-mq 10907  df-1nq 10908  df-rq 10909  df-ltnq 10910  df-np 10973  df-1p 10974  df-plp 10975  df-mp 10976  df-ltp 10977  df-enr 11047  df-nr 11048  df-plr 11049  df-mr 11050  df-0r 11052  df-1r 11053  df-m1r 11054  df-c 11113  df-0 11114  df-r 11117  df-add 11118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator