![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axrnegex | Structured version Visualization version GIF version |
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11255. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axrnegex | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal2 11201 | . . . . 5 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | |
2 | 1 | simplbi 497 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1st ‘𝐴) ∈ R) |
3 | m1r 11151 | . . . 4 ⊢ -1R ∈ R | |
4 | mulclsr 11153 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ -1R ∈ R) → ((1st ‘𝐴) ·R -1R) ∈ R) | |
5 | 2, 3, 4 | sylancl 585 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1st ‘𝐴) ·R -1R) ∈ R) |
6 | opelreal 11199 | . . 3 ⊢ (〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ↔ ((1st ‘𝐴) ·R -1R) ∈ R) | |
7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ) |
8 | 1 | simprbi 496 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
9 | 8 | oveq1d 7463 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) |
10 | addresr 11207 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ ((1st ‘𝐴) ·R -1R) ∈ R) → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) | |
11 | 2, 5, 10 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ℝ → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) |
12 | pn0sr 11170 | . . . . . 6 ⊢ ((1st ‘𝐴) ∈ R → ((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)) = 0R) | |
13 | 12 | opeq1d 4903 | . . . . 5 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 〈0R, 0R〉) |
14 | df-0 11191 | . . . . 5 ⊢ 0 = 〈0R, 0R〉 | |
15 | 13, 14 | eqtr4di 2798 | . . . 4 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
16 | 2, 15 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
17 | 9, 11, 16 | 3eqtrd 2784 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) |
18 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → (𝐴 + 𝑥) = (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) | |
19 | 18 | eqeq1d 2742 | . . 3 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0)) |
20 | 19 | rspcev 3635 | . 2 ⊢ ((〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ∧ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
21 | 7, 17, 20 | syl2anc 583 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 〈cop 4654 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 Rcnr 10934 0Rc0r 10935 -1Rcm1r 10937 +R cplr 10938 ·R cmr 10939 ℝcr 11183 0cc0 11184 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-rq 10986 df-ltnq 10987 df-np 11050 df-1p 11051 df-plp 11052 df-mp 11053 df-ltp 11054 df-enr 11124 df-nr 11125 df-plr 11126 df-mr 11127 df-0r 11129 df-1r 11130 df-m1r 11131 df-c 11190 df-0 11191 df-r 11194 df-add 11195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |