| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrnegex | Structured version Visualization version GIF version | ||
| Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11084. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axrnegex | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal2 11030 | . . . . 5 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | |
| 2 | 1 | simplbi 497 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1st ‘𝐴) ∈ R) |
| 3 | m1r 10980 | . . . 4 ⊢ -1R ∈ R | |
| 4 | mulclsr 10982 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ -1R ∈ R) → ((1st ‘𝐴) ·R -1R) ∈ R) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1st ‘𝐴) ·R -1R) ∈ R) |
| 6 | opelreal 11028 | . . 3 ⊢ (〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ↔ ((1st ‘𝐴) ·R -1R) ∈ R) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ) |
| 8 | 1 | simprbi 496 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
| 9 | 8 | oveq1d 7367 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) |
| 10 | addresr 11036 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ ((1st ‘𝐴) ·R -1R) ∈ R) → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) | |
| 11 | 2, 5, 10 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) |
| 12 | pn0sr 10999 | . . . . . 6 ⊢ ((1st ‘𝐴) ∈ R → ((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)) = 0R) | |
| 13 | 12 | opeq1d 4830 | . . . . 5 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 〈0R, 0R〉) |
| 14 | df-0 11020 | . . . . 5 ⊢ 0 = 〈0R, 0R〉 | |
| 15 | 13, 14 | eqtr4di 2786 | . . . 4 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
| 16 | 2, 15 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
| 17 | 9, 11, 16 | 3eqtrd 2772 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) |
| 18 | oveq2 7360 | . . . 4 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → (𝐴 + 𝑥) = (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) | |
| 19 | 18 | eqeq1d 2735 | . . 3 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0)) |
| 20 | 19 | rspcev 3573 | . 2 ⊢ ((〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ∧ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| 21 | 7, 17, 20 | syl2anc 584 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 〈cop 4581 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 Rcnr 10763 0Rc0r 10764 -1Rcm1r 10766 +R cplr 10767 ·R cmr 10768 ℝcr 11012 0cc0 11013 + caddc 11016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-1p 10880 df-plp 10881 df-mp 10882 df-ltp 10883 df-enr 10953 df-nr 10954 df-plr 10955 df-mr 10956 df-0r 10958 df-1r 10959 df-m1r 10960 df-c 11019 df-0 11020 df-r 11023 df-add 11024 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |