MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardf2 Structured version   Visualization version   GIF version

Theorem cardf2 9356
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardf2 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Distinct variable group:   𝑥,𝑦

Proof of Theorem cardf2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-card 9352 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21funmpt2 6363 . . 3 Fun card
3 rabab 3470 . . . 4 {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
41dmmpt 6061 . . . 4 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
5 intexrab 5207 . . . . 5 (∃𝑦 ∈ On 𝑦𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V)
65abbii 2863 . . . 4 {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
73, 4, 63eqtr4i 2831 . . 3 dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
8 df-fn 6327 . . 3 (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ (Fun card ∧ dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}))
92, 7, 8mpbir2an 710 . 2 card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
10 simpr 488 . . . . . . . . 9 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})
11 vex 3444 . . . . . . . . 9 𝑤 ∈ V
1210, 11eqeltrrdi 2899 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
13 intex 5204 . . . . . . . 8 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
1412, 13sylibr 237 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅)
15 rabn0 4293 . . . . . . 7 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑦𝑧)
1614, 15sylib 221 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → ∃𝑦 ∈ On 𝑦𝑧)
17 vex 3444 . . . . . . 7 𝑧 ∈ V
18 breq2 5034 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
1918rexbidv 3256 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ On 𝑦𝑥 ↔ ∃𝑦 ∈ On 𝑦𝑧))
2017, 19elab 3615 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ ∃𝑦 ∈ On 𝑦𝑧)
2116, 20sylibr 237 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥})
22 ssrab2 4007 . . . . . . 7 {𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On
23 oninton 7495 . . . . . . 7 (({𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2422, 14, 23sylancr 590 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2510, 24eqeltrd 2890 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 ∈ On)
2621, 25jca 515 . . . 4 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On))
2726ssopab2i 5402 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})} ⊆ {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
28 df-card 9352 . . . 4 card = (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧})
29 df-mpt 5111 . . . 4 (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧}) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
3028, 29eqtri 2821 . . 3 card = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
31 df-xp 5525 . . 3 ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
3227, 30, 313sstr4i 3958 . 2 card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)
33 dff2 6842 . 2 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On ↔ (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)))
349, 32, 33mpbir2an 710 1 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243   cint 4838   class class class wbr 5030  {copab 5092  cmpt 5110   × cxp 5517  dom cdm 5519  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  wf 6320  cen 8489  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-fun 6326  df-fn 6327  df-f 6328  df-card 9352
This theorem is referenced by:  cardon  9357  isnum2  9358  cardf  9961  smobeth  9997  hashkf  13688  hashgval  13689  cardpred  32473  nummin  32474
  Copyright terms: Public domain W3C validator