MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardf2 Structured version   Visualization version   GIF version

Theorem cardf2 9836
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardf2 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Distinct variable group:   𝑥,𝑦

Proof of Theorem cardf2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-card 9832 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21funmpt2 6520 . . 3 Fun card
3 rabab 3467 . . . 4 {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
41dmmpt 6187 . . . 4 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
5 intexrab 5283 . . . . 5 (∃𝑦 ∈ On 𝑦𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V)
65abbii 2798 . . . 4 {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
73, 4, 63eqtr4i 2764 . . 3 dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
8 df-fn 6484 . . 3 (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ (Fun card ∧ dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}))
92, 7, 8mpbir2an 711 . 2 card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
10 simpr 484 . . . . . . . . 9 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})
11 vex 3440 . . . . . . . . 9 𝑤 ∈ V
1210, 11eqeltrrdi 2840 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
13 intex 5280 . . . . . . . 8 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
1412, 13sylibr 234 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅)
15 rabn0 4336 . . . . . . 7 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑦𝑧)
1614, 15sylib 218 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → ∃𝑦 ∈ On 𝑦𝑧)
17 vex 3440 . . . . . . 7 𝑧 ∈ V
18 breq2 5093 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
1918rexbidv 3156 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ On 𝑦𝑥 ↔ ∃𝑦 ∈ On 𝑦𝑧))
2017, 19elab 3630 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ ∃𝑦 ∈ On 𝑦𝑧)
2116, 20sylibr 234 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥})
22 ssrab2 4027 . . . . . . 7 {𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On
23 oninton 7728 . . . . . . 7 (({𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2422, 14, 23sylancr 587 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2510, 24eqeltrd 2831 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 ∈ On)
2621, 25jca 511 . . . 4 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On))
2726ssopab2i 5488 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})} ⊆ {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
28 df-card 9832 . . . 4 card = (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧})
29 df-mpt 5171 . . . 4 (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧}) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
3028, 29eqtri 2754 . . 3 card = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
31 df-xp 5620 . . 3 ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
3227, 30, 313sstr4i 3981 . 2 card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)
33 dff2 7032 . 2 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On ↔ (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)))
349, 32, 33mpbir2an 711 1 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   cint 4895   class class class wbr 5089  {copab 5151  cmpt 5170   × cxp 5612  dom cdm 5614  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  wf 6477  cen 8866  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-fun 6483  df-fn 6484  df-f 6485  df-card 9832
This theorem is referenced by:  cardon  9837  isnum2  9838  cardf  10441  smobeth  10477  hashkf  14239  hashgval  14240  cardpred  35103  nummin  35104
  Copyright terms: Public domain W3C validator