MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardf2 Structured version   Visualization version   GIF version

Theorem cardf2 9729
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardf2 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Distinct variable group:   𝑥,𝑦

Proof of Theorem cardf2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-card 9725 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21funmpt2 6490 . . 3 Fun card
3 rabab 3462 . . . 4 {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
41dmmpt 6147 . . . 4 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
5 intexrab 5267 . . . . 5 (∃𝑦 ∈ On 𝑦𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V)
65abbii 2803 . . . 4 {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
73, 4, 63eqtr4i 2771 . . 3 dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
8 df-fn 6450 . . 3 (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ (Fun card ∧ dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}))
92, 7, 8mpbir2an 707 . 2 card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
10 simpr 484 . . . . . . . . 9 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})
11 vex 3438 . . . . . . . . 9 𝑤 ∈ V
1210, 11eqeltrrdi 2843 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
13 intex 5264 . . . . . . . 8 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
1412, 13sylibr 233 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅)
15 rabn0 4322 . . . . . . 7 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑦𝑧)
1614, 15sylib 217 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → ∃𝑦 ∈ On 𝑦𝑧)
17 vex 3438 . . . . . . 7 𝑧 ∈ V
18 breq2 5081 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
1918rexbidv 3169 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ On 𝑦𝑥 ↔ ∃𝑦 ∈ On 𝑦𝑧))
2017, 19elab 3611 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ ∃𝑦 ∈ On 𝑦𝑧)
2116, 20sylibr 233 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥})
22 ssrab2 4016 . . . . . . 7 {𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On
23 oninton 7665 . . . . . . 7 (({𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2422, 14, 23sylancr 586 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2510, 24eqeltrd 2834 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 ∈ On)
2621, 25jca 511 . . . 4 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On))
2726ssopab2i 5466 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})} ⊆ {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
28 df-card 9725 . . . 4 card = (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧})
29 df-mpt 5161 . . . 4 (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧}) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
3028, 29eqtri 2761 . . 3 card = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
31 df-xp 5597 . . 3 ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
3227, 30, 313sstr4i 3966 . 2 card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)
33 dff2 6995 . 2 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On ↔ (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)))
349, 32, 33mpbir2an 707 1 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2101  {cab 2710  wne 2938  wrex 3068  {crab 3221  Vcvv 3434  wss 3889  c0 4259   cint 4882   class class class wbr 5077  {copab 5139  cmpt 5160   × cxp 5589  dom cdm 5591  Oncon0 6270  Fun wfun 6441   Fn wfn 6442  wf 6443  cen 8750  cardccrd 9721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6273  df-on 6274  df-fun 6449  df-fn 6450  df-f 6451  df-card 9725
This theorem is referenced by:  cardon  9730  isnum2  9731  cardf  10334  smobeth  10370  hashkf  14074  hashgval  14075  cardpred  33090  nummin  33091
  Copyright terms: Public domain W3C validator