MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardf2 Structured version   Visualization version   GIF version

Theorem cardf2 9374
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardf2 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Distinct variable group:   𝑥,𝑦

Proof of Theorem cardf2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-card 9370 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21funmpt2 6396 . . 3 Fun card
3 rabab 3525 . . . 4 {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
41dmmpt 6096 . . . 4 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
5 intexrab 5245 . . . . 5 (∃𝑦 ∈ On 𝑦𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V)
65abbii 2888 . . . 4 {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} = {𝑥 {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
73, 4, 63eqtr4i 2856 . . 3 dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
8 df-fn 6360 . . 3 (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ (Fun card ∧ dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}))
92, 7, 8mpbir2an 709 . 2 card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}
10 simpr 487 . . . . . . . . 9 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})
11 vex 3499 . . . . . . . . 9 𝑤 ∈ V
1210, 11eqeltrrdi 2924 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
13 intex 5242 . . . . . . . 8 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝑧} ∈ V)
1412, 13sylibr 236 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅)
15 rabn0 4341 . . . . . . 7 ({𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅ ↔ ∃𝑦 ∈ On 𝑦𝑧)
1614, 15sylib 220 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → ∃𝑦 ∈ On 𝑦𝑧)
17 vex 3499 . . . . . . 7 𝑧 ∈ V
18 breq2 5072 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
1918rexbidv 3299 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ On 𝑦𝑥 ↔ ∃𝑦 ∈ On 𝑦𝑧))
2017, 19elab 3669 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ↔ ∃𝑦 ∈ On 𝑦𝑧)
2116, 20sylibr 236 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥})
22 ssrab2 4058 . . . . . . 7 {𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On
23 oninton 7517 . . . . . . 7 (({𝑦 ∈ On ∣ 𝑦𝑧} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝑧} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2422, 14, 23sylancr 589 . . . . . 6 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → {𝑦 ∈ On ∣ 𝑦𝑧} ∈ On)
2510, 24eqeltrd 2915 . . . . 5 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → 𝑤 ∈ On)
2621, 25jca 514 . . . 4 ((𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧}) → (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On))
2726ssopab2i 5439 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})} ⊆ {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
28 df-card 9370 . . . 4 card = (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧})
29 df-mpt 5149 . . . 4 (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧}) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
3028, 29eqtri 2846 . . 3 card = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ V ∧ 𝑤 = {𝑦 ∈ On ∣ 𝑦𝑧})}
31 df-xp 5563 . . 3 ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ 𝑤 ∈ On)}
3227, 30, 313sstr4i 4012 . 2 card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)
33 dff2 6867 . 2 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On ↔ (card Fn {𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} ∧ card ⊆ ({𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥} × On)))
349, 32, 33mpbir2an 709 1 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wrex 3141  {crab 3144  Vcvv 3496  wss 3938  c0 4293   cint 4878   class class class wbr 5068  {copab 5130  cmpt 5148   × cxp 5555  dom cdm 5557  Oncon0 6193  Fun wfun 6351   Fn wfn 6352  wf 6353  cen 8508  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-fun 6359  df-fn 6360  df-f 6361  df-card 9370
This theorem is referenced by:  cardon  9375  isnum2  9376  cardf  9974  smobeth  10010  hashkf  13695  hashgval  13696
  Copyright terms: Public domain W3C validator