MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnrcl Structured version   Visualization version   GIF version

Theorem acnrcl 9729
Description: Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnrcl (𝑋AC 𝐴𝐴 ∈ V)

Proof of Theorem acnrcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 4265 . . 3 (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} ≠ ∅)
2 abn0 4311 . . . 4 ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} ≠ ∅ ↔ ∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
3 simpl 482 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → 𝐴 ∈ V)
43exlimiv 1934 . . . 4 (∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → 𝐴 ∈ V)
52, 4sylbi 216 . . 3 ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} ≠ ∅ → 𝐴 ∈ V)
61, 5syl 17 . 2 (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} → 𝐴 ∈ V)
7 df-acn 9631 . 2 AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
86, 7eleq2s 2857 1 (𝑋AC 𝐴𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  Vcvv 3422  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558  cfv 6418  (class class class)co 7255  m cmap 8573  AC wacn 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-dif 3886  df-nul 4254  df-acn 9631
This theorem is referenced by:  acni  9732  acni2  9733  acndom2  9741  fodomacn  9743  iundom2g  10227
  Copyright terms: Public domain W3C validator