MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnrcl Structured version   Visualization version   GIF version

Theorem acnrcl 9933
Description: Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnrcl (𝑋AC 𝐴𝐴 ∈ V)

Proof of Theorem acnrcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 4288 . . 3 (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} ≠ ∅)
2 abn0 4332 . . . 4 ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} ≠ ∅ ↔ ∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
3 simpl 482 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → 𝐴 ∈ V)
43exlimiv 1931 . . . 4 (∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → 𝐴 ∈ V)
52, 4sylbi 217 . . 3 ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} ≠ ∅ → 𝐴 ∈ V)
61, 5syl 17 . 2 (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} → 𝐴 ∈ V)
7 df-acn 9835 . 2 AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
86, 7eleq2s 2849 1 (𝑋AC 𝐴𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  Vcvv 3436  cdif 3894  c0 4280  𝒫 cpw 4547  {csn 4573  cfv 6481  (class class class)co 7346  m cmap 8750  AC wacn 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-dif 3900  df-nul 4281  df-acn 9835
This theorem is referenced by:  acni  9936  acni2  9937  acndom2  9945  fodomacn  9947  iundom2g  10431
  Copyright terms: Public domain W3C validator