| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acnrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acnrcl | ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4288 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} ≠ ∅) | |
| 2 | abn0 4332 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} ≠ ∅ ↔ ∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → 𝐴 ∈ V) | |
| 4 | 3 | exlimiv 1931 | . . . 4 ⊢ (∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → 𝐴 ∈ V) |
| 5 | 2, 4 | sylbi 217 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} ≠ ∅ → 𝐴 ∈ V) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} → 𝐴 ∈ V) |
| 7 | df-acn 9835 | . 2 ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
| 8 | 6, 7 | eleq2s 2849 | 1 ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ∅c0 4280 𝒫 cpw 4547 {csn 4573 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 AC wacn 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3900 df-nul 4281 df-acn 9835 |
| This theorem is referenced by: acni 9936 acni2 9937 acndom2 9945 fodomacn 9947 iundom2g 10431 |
| Copyright terms: Public domain | W3C validator |