![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acnrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnrcl | ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4334 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} ≠ ∅) | |
2 | abn0 4380 | . . . 4 ⊢ ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} ≠ ∅ ↔ ∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → 𝐴 ∈ V) | |
4 | 3 | exlimiv 1932 | . . . 4 ⊢ (∃𝑥(𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → 𝐴 ∈ V) |
5 | 2, 4 | sylbi 216 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} ≠ ∅ → 𝐴 ∈ V) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} → 𝐴 ∈ V) |
7 | df-acn 9940 | . 2 ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
8 | 6, 7 | eleq2s 2850 | 1 ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 {cab 2708 ≠ wne 2939 ∀wral 3060 Vcvv 3473 ∖ cdif 3945 ∅c0 4322 𝒫 cpw 4602 {csn 4628 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8823 AC wacn 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-dif 3951 df-nul 4323 df-acn 9940 |
This theorem is referenced by: acni 10043 acni2 10044 acndom2 10052 fodomacn 10054 iundom2g 10538 |
Copyright terms: Public domain | W3C validator |