MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacn Structured version   Visualization version   GIF version

Theorem isacn 10113
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
isacn ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝑓,𝑋,𝑔,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem isacn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pweq 4636 . . . . . . 7 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
21difeq1d 4148 . . . . . 6 (𝑦 = 𝑋 → (𝒫 𝑦 ∖ {∅}) = (𝒫 𝑋 ∖ {∅}))
32oveq1d 7463 . . . . 5 (𝑦 = 𝑋 → ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
43raleqdv 3334 . . . 4 (𝑦 = 𝑋 → (∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
54anbi2d 629 . . 3 (𝑦 = 𝑋 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
6 df-acn 10011 . . 3 AC 𝐴 = {𝑦 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))}
75, 6elab2g 3696 . 2 (𝑋𝑉 → (𝑋AC 𝐴 ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
8 elex 3509 . . 3 (𝐴𝑊𝐴 ∈ V)
9 biid 261 . . . 4 ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
109baib 535 . . 3 (𝐴 ∈ V → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
118, 10syl 17 . 2 (𝐴𝑊 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
127, 11sylan9bb 509 1 ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  cfv 6573  (class class class)co 7448  m cmap 8884  AC wacn 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-acn 10011
This theorem is referenced by:  acni  10114  numacn  10118  finacn  10119  acndom  10120  acndom2  10123  acncc  10509
  Copyright terms: Public domain W3C validator