MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacn Structured version   Visualization version   GIF version

Theorem isacn 10045
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
isacn ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝑓,𝑋,𝑔,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem isacn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pweq 4616 . . . . . . 7 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
21difeq1d 4121 . . . . . 6 (𝑦 = 𝑋 → (𝒫 𝑦 ∖ {∅}) = (𝒫 𝑋 ∖ {∅}))
32oveq1d 7427 . . . . 5 (𝑦 = 𝑋 → ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
43raleqdv 3324 . . . 4 (𝑦 = 𝑋 → (∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
54anbi2d 628 . . 3 (𝑦 = 𝑋 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
6 df-acn 9943 . . 3 AC 𝐴 = {𝑦 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))}
75, 6elab2g 3670 . 2 (𝑋𝑉 → (𝑋AC 𝐴 ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
8 elex 3492 . . 3 (𝐴𝑊𝐴 ∈ V)
9 biid 261 . . . 4 ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
109baib 535 . . 3 (𝐴 ∈ V → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
118, 10syl 17 . 2 (𝐴𝑊 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
127, 11sylan9bb 509 1 ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  wral 3060  Vcvv 3473  cdif 3945  c0 4322  𝒫 cpw 4602  {csn 4628  cfv 6543  (class class class)co 7412  m cmap 8826  AC wacn 9939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-acn 9943
This theorem is referenced by:  acni  10046  numacn  10050  finacn  10051  acndom  10052  acndom2  10055  acncc  10441
  Copyright terms: Public domain W3C validator