Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Structured version   Visualization version   GIF version

Theorem acneq 9463
 Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq (𝐴 = 𝐶AC 𝐴 = AC 𝐶)

Proof of Theorem acneq
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2905 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
2 oveq2 7158 . . . . 5 (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶))
3 raleq 3411 . . . . . 6 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
43exbidv 1915 . . . . 5 (𝐴 = 𝐶 → (∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
52, 4raleqbidv 3407 . . . 4 (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
61, 5anbi12d 630 . . 3 (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))))
76abbidv 2890 . 2 (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))})
8 df-acn 9365 . 2 AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
9 df-acn 9365 . 2 AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))}
107, 8, 93eqtr4g 2886 1 (𝐴 = 𝐶AC 𝐴 = AC 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530  ∃wex 1773   ∈ wcel 2107  {cab 2804  ∀wral 3143  Vcvv 3500   ∖ cdif 3937  ∅c0 4295  𝒫 cpw 4542  {csn 4564  ‘cfv 6354  (class class class)co 7150   ↑m cmap 8401  AC wacn 9361 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-iota 6313  df-fv 6362  df-ov 7153  df-acn 9365 This theorem is referenced by:  acndom  9471  dfacacn  9561  dfac13  9562
 Copyright terms: Public domain W3C validator