![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acneq | Structured version Visualization version GIF version |
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acneq | ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
2 | oveq2 7439 | . . . . 5 ⊢ (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)) | |
3 | raleq 3321 | . . . . . 6 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
4 | 3 | exbidv 1919 | . . . . 5 ⊢ (𝐴 = 𝐶 → (∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
5 | 2, 4 | raleqbidv 3344 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦)))) |
7 | 6 | abbidv 2806 | . 2 ⊢ (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))}) |
8 | df-acn 9980 | . 2 ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
9 | df-acn 9980 | . 2 ⊢ AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
10 | 7, 8, 9 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∀wral 3059 Vcvv 3478 ∖ cdif 3960 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 AC wacn 9976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-acn 9980 |
This theorem is referenced by: acndom 10089 dfacacn 10180 dfac13 10181 |
Copyright terms: Public domain | W3C validator |