| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acneq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acneq | ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
| 2 | oveq2 7398 | . . . . 5 ⊢ (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)) | |
| 3 | raleq 3298 | . . . . . 6 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 4 | 3 | exbidv 1921 | . . . . 5 ⊢ (𝐴 = 𝐶 → (∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 5 | 2, 4 | raleqbidv 3321 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 6 | 1, 5 | anbi12d 632 | . . 3 ⊢ (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦)))) |
| 7 | 6 | abbidv 2796 | . 2 ⊢ (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))}) |
| 8 | df-acn 9902 | . 2 ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
| 9 | df-acn 9902 | . 2 ⊢ AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
| 10 | 7, 8, 9 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∀wral 3045 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 AC wacn 9898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-acn 9902 |
| This theorem is referenced by: acndom 10011 dfacacn 10102 dfac13 10103 |
| Copyright terms: Public domain | W3C validator |