![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acneq | Structured version Visualization version GIF version |
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acneq | ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
2 | oveq2 7456 | . . . . 5 ⊢ (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)) | |
3 | raleq 3331 | . . . . . 6 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
4 | 3 | exbidv 1920 | . . . . 5 ⊢ (𝐴 = 𝐶 → (∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
5 | 2, 4 | raleqbidv 3354 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
6 | 1, 5 | anbi12d 631 | . . 3 ⊢ (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦)))) |
7 | 6 | abbidv 2811 | . 2 ⊢ (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))}) |
8 | df-acn 10011 | . 2 ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
9 | df-acn 10011 | . 2 ⊢ AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
10 | 7, 8, 9 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 AC wacn 10007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-acn 10011 |
This theorem is referenced by: acndom 10120 dfacacn 10211 dfac13 10212 |
Copyright terms: Public domain | W3C validator |