MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Structured version   Visualization version   GIF version

Theorem acneq 9996
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq (𝐴 = 𝐶AC 𝐴 = AC 𝐶)

Proof of Theorem acneq
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
2 oveq2 7395 . . . . 5 (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶))
3 raleq 3296 . . . . . 6 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
43exbidv 1921 . . . . 5 (𝐴 = 𝐶 → (∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
52, 4raleqbidv 3319 . . . 4 (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
61, 5anbi12d 632 . . 3 (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))))
76abbidv 2795 . 2 (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))})
8 df-acn 9895 . 2 AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
9 df-acn 9895 . 2 AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))}
107, 8, 93eqtr4g 2789 1 (𝐴 = 𝐶AC 𝐴 = AC 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  cdif 3911  c0 4296  𝒫 cpw 4563  {csn 4589  cfv 6511  (class class class)co 7387  m cmap 8799  AC wacn 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-acn 9895
This theorem is referenced by:  acndom  10004  dfacacn  10095  dfac13  10096
  Copyright terms: Public domain W3C validator