MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Structured version   Visualization version   GIF version

Theorem acneq 9684
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq (𝐴 = 𝐶AC 𝐴 = AC 𝐶)

Proof of Theorem acneq
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2827 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
2 oveq2 7242 . . . . 5 (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶))
3 raleq 3333 . . . . . 6 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
43exbidv 1929 . . . . 5 (𝐴 = 𝐶 → (∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
52, 4raleqbidv 3327 . . . 4 (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
61, 5anbi12d 634 . . 3 (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))))
76abbidv 2809 . 2 (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))})
8 df-acn 9585 . 2 AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
9 df-acn 9585 . 2 AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))}
107, 8, 93eqtr4g 2805 1 (𝐴 = 𝐶AC 𝐴 = AC 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2112  {cab 2716  wral 3063  Vcvv 3422  cdif 3879  c0 4253  𝒫 cpw 4529  {csn 4557  cfv 6400  (class class class)co 7234  m cmap 8531  AC wacn 9581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4254  df-if 4456  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4836  df-br 5070  df-iota 6358  df-fv 6408  df-ov 7237  df-acn 9585
This theorem is referenced by:  acndom  9692  dfacacn  9782  dfac13  9783
  Copyright terms: Public domain W3C validator