Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-tag Structured version   Visualization version   GIF version

Definition df-bj-tag 33838
Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
df-bj-tag tag 𝐴 = (sngl 𝐴 ∪ {∅})

Detailed syntax breakdown of Definition df-bj-tag
StepHypRef Expression
1 cA . . 3 class 𝐴
21bj-ctag 33837 . 2 class tag 𝐴
31bj-csngl 33828 . . 3 class sngl 𝐴
4 c0 4173 . . . 4 class
54csn 4436 . . 3 class {∅}
63, 5cun 3822 . 2 class (sngl 𝐴 ∪ {∅})
72, 6wceq 1508 1 wff tag 𝐴 = (sngl 𝐴 ∪ {∅})
Colors of variables: wff setvar class
This definition is referenced by:  bj-tageq  33839  bj-eltag  33840  bj-0eltag  33841  bj-tagss  33843  bj-snglsstag  33844  bj-sngltag  33846  bj-tagex  33850
  Copyright terms: Public domain W3C validator