| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-tag | Structured version Visualization version GIF version | ||
| Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-bj-tag | ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | bj-ctag 36962 | . 2 class tag 𝐴 |
| 3 | 1 | bj-csngl 36953 | . . 3 class sngl 𝐴 |
| 4 | c0 4296 | . . . 4 class ∅ | |
| 5 | 4 | csn 4589 | . . 3 class {∅} |
| 6 | 3, 5 | cun 3912 | . 2 class (sngl 𝐴 ∪ {∅}) |
| 7 | 2, 6 | wceq 1540 | 1 wff tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-tageq 36964 bj-eltag 36965 bj-0eltag 36966 bj-tagss 36968 bj-snglsstag 36969 bj-sngltag 36971 bj-tagex 36975 |
| Copyright terms: Public domain | W3C validator |