Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-tag | Structured version Visualization version GIF version |
Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
df-bj-tag | ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | bj-ctag 35164 | . 2 class tag 𝐴 |
3 | 1 | bj-csngl 35155 | . . 3 class sngl 𝐴 |
4 | c0 4256 | . . . 4 class ∅ | |
5 | 4 | csn 4561 | . . 3 class {∅} |
6 | 3, 5 | cun 3885 | . 2 class (sngl 𝐴 ∪ {∅}) |
7 | 2, 6 | wceq 1539 | 1 wff tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
Colors of variables: wff setvar class |
This definition is referenced by: bj-tageq 35166 bj-eltag 35167 bj-0eltag 35168 bj-tagss 35170 bj-snglsstag 35171 bj-sngltag 35173 bj-tagex 35177 |
Copyright terms: Public domain | W3C validator |