Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sngltag Structured version   Visualization version   GIF version

Theorem bj-sngltag 35100
Description: The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sngltag (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))

Proof of Theorem bj-sngltag
StepHypRef Expression
1 bj-sngltagi 35099 . 2 ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵)
2 df-bj-tag 35092 . . . 4 tag 𝐵 = (sngl 𝐵 ∪ {∅})
32eleq2i 2830 . . 3 ({𝐴} ∈ tag 𝐵 ↔ {𝐴} ∈ (sngl 𝐵 ∪ {∅}))
4 elun 4079 . . . 4 ({𝐴} ∈ (sngl 𝐵 ∪ {∅}) ↔ ({𝐴} ∈ sngl 𝐵 ∨ {𝐴} ∈ {∅}))
5 idd 24 . . . . 5 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ sngl 𝐵))
6 elsni 4575 . . . . . 6 ({𝐴} ∈ {∅} → {𝐴} = ∅)
7 snprc 4650 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
8 elex 3440 . . . . . . . 8 (𝐴𝑉𝐴 ∈ V)
98pm2.24d 151 . . . . . . 7 (𝐴𝑉 → (¬ 𝐴 ∈ V → {𝐴} ∈ sngl 𝐵))
107, 9syl5bir 242 . . . . . 6 (𝐴𝑉 → ({𝐴} = ∅ → {𝐴} ∈ sngl 𝐵))
116, 10syl5 34 . . . . 5 (𝐴𝑉 → ({𝐴} ∈ {∅} → {𝐴} ∈ sngl 𝐵))
125, 11jaod 855 . . . 4 (𝐴𝑉 → (({𝐴} ∈ sngl 𝐵 ∨ {𝐴} ∈ {∅}) → {𝐴} ∈ sngl 𝐵))
134, 12syl5bi 241 . . 3 (𝐴𝑉 → ({𝐴} ∈ (sngl 𝐵 ∪ {∅}) → {𝐴} ∈ sngl 𝐵))
143, 13syl5bi 241 . 2 (𝐴𝑉 → ({𝐴} ∈ tag 𝐵 → {𝐴} ∈ sngl 𝐵))
151, 14impbid2 225 1 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  {csn 4558  sngl bj-csngl 35082  tag bj-ctag 35091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-bj-tag 35092
This theorem is referenced by:  bj-tagcg  35102  bj-taginv  35103
  Copyright terms: Public domain W3C validator