Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sngltag Structured version   Visualization version   GIF version

Theorem bj-sngltag 36978
Description: The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-sngltag (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))

Proof of Theorem bj-sngltag
StepHypRef Expression
1 bj-sngltagi 36977 . 2 ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵)
2 df-bj-tag 36970 . . . 4 tag 𝐵 = (sngl 𝐵 ∪ {∅})
32eleq2i 2821 . . 3 ({𝐴} ∈ tag 𝐵 ↔ {𝐴} ∈ (sngl 𝐵 ∪ {∅}))
4 elun 4119 . . . 4 ({𝐴} ∈ (sngl 𝐵 ∪ {∅}) ↔ ({𝐴} ∈ sngl 𝐵 ∨ {𝐴} ∈ {∅}))
5 idd 24 . . . . 5 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ sngl 𝐵))
6 elsni 4609 . . . . . 6 ({𝐴} ∈ {∅} → {𝐴} = ∅)
7 snprc 4684 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
8 elex 3471 . . . . . . . 8 (𝐴𝑉𝐴 ∈ V)
98pm2.24d 151 . . . . . . 7 (𝐴𝑉 → (¬ 𝐴 ∈ V → {𝐴} ∈ sngl 𝐵))
107, 9biimtrrid 243 . . . . . 6 (𝐴𝑉 → ({𝐴} = ∅ → {𝐴} ∈ sngl 𝐵))
116, 10syl5 34 . . . . 5 (𝐴𝑉 → ({𝐴} ∈ {∅} → {𝐴} ∈ sngl 𝐵))
125, 11jaod 859 . . . 4 (𝐴𝑉 → (({𝐴} ∈ sngl 𝐵 ∨ {𝐴} ∈ {∅}) → {𝐴} ∈ sngl 𝐵))
134, 12biimtrid 242 . . 3 (𝐴𝑉 → ({𝐴} ∈ (sngl 𝐵 ∪ {∅}) → {𝐴} ∈ sngl 𝐵))
143, 13biimtrid 242 . 2 (𝐴𝑉 → ({𝐴} ∈ tag 𝐵 → {𝐴} ∈ sngl 𝐵))
151, 14impbid2 226 1 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  c0 4299  {csn 4592  sngl bj-csngl 36960  tag bj-ctag 36969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-sn 4593  df-bj-tag 36970
This theorem is referenced by:  bj-tagcg  36980  bj-taginv  36981
  Copyright terms: Public domain W3C validator