![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sngltag | Structured version Visualization version GIF version |
Description: The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-sngltag | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sngltagi 35503 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵) | |
2 | df-bj-tag 35496 | . . . 4 ⊢ tag 𝐵 = (sngl 𝐵 ∪ {∅}) | |
3 | 2 | eleq2i 2826 | . . 3 ⊢ ({𝐴} ∈ tag 𝐵 ↔ {𝐴} ∈ (sngl 𝐵 ∪ {∅})) |
4 | elun 4112 | . . . 4 ⊢ ({𝐴} ∈ (sngl 𝐵 ∪ {∅}) ↔ ({𝐴} ∈ sngl 𝐵 ∨ {𝐴} ∈ {∅})) | |
5 | idd 24 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ sngl 𝐵)) | |
6 | elsni 4607 | . . . . . 6 ⊢ ({𝐴} ∈ {∅} → {𝐴} = ∅) | |
7 | snprc 4682 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
8 | elex 3465 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
9 | 8 | pm2.24d 151 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ V → {𝐴} ∈ sngl 𝐵)) |
10 | 7, 9 | biimtrrid 242 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = ∅ → {𝐴} ∈ sngl 𝐵)) |
11 | 6, 10 | syl5 34 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ {∅} → {𝐴} ∈ sngl 𝐵)) |
12 | 5, 11 | jaod 858 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (({𝐴} ∈ sngl 𝐵 ∨ {𝐴} ∈ {∅}) → {𝐴} ∈ sngl 𝐵)) |
13 | 4, 12 | biimtrid 241 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ (sngl 𝐵 ∪ {∅}) → {𝐴} ∈ sngl 𝐵)) |
14 | 3, 13 | biimtrid 241 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ tag 𝐵 → {𝐴} ∈ sngl 𝐵)) |
15 | 1, 14 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∪ cun 3912 ∅c0 4286 {csn 4590 sngl bj-csngl 35486 tag bj-ctag 35495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-sn 4591 df-bj-tag 35496 |
This theorem is referenced by: bj-tagcg 35506 bj-taginv 35507 |
Copyright terms: Public domain | W3C validator |