Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagex | Structured version Visualization version GIF version |
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagex | ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglex 34900 | . . 3 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | |
2 | p0ex 5277 | . . . 4 ⊢ {∅} ∈ V | |
3 | 2 | biantru 533 | . . 3 ⊢ (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
4 | 1, 3 | bitri 278 | . 2 ⊢ (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
5 | unexb 7533 | . 2 ⊢ ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V) | |
6 | df-bj-tag 34902 | . . . 4 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
7 | 6 | eqcomi 2746 | . . 3 ⊢ (sngl 𝐴 ∪ {∅}) = tag 𝐴 |
8 | 7 | eleq1i 2828 | . 2 ⊢ ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V) |
9 | 4, 5, 8 | 3bitri 300 | 1 ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ∅c0 4237 {csn 4541 sngl bj-csngl 34892 tag bj-ctag 34901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-pw 4515 df-sn 4542 df-pr 4544 df-uni 4820 df-bj-sngl 34893 df-bj-tag 34902 |
This theorem is referenced by: bj-xtagex 34916 |
Copyright terms: Public domain | W3C validator |