Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagex Structured version   Visualization version   GIF version

Theorem bj-tagex 36953
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagex (𝐴 ∈ V ↔ tag 𝐴 ∈ V)

Proof of Theorem bj-tagex
StepHypRef Expression
1 bj-snglex 36939 . . 3 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
2 p0ex 5402 . . . 4 {∅} ∈ V
32biantru 529 . . 3 (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
41, 3bitri 275 . 2 (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
5 unexb 7782 . 2 ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V)
6 df-bj-tag 36941 . . . 4 tag 𝐴 = (sngl 𝐴 ∪ {∅})
76eqcomi 2749 . . 3 (sngl 𝐴 ∪ {∅}) = tag 𝐴
87eleq1i 2835 . 2 ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V)
94, 5, 83bitri 297 1 (𝐴 ∈ V ↔ tag 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3488  cun 3974  c0 4352  {csn 4648  sngl bj-csngl 36931  tag bj-ctag 36940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-bj-sngl 36932  df-bj-tag 36941
This theorem is referenced by:  bj-xtagex  36955
  Copyright terms: Public domain W3C validator