| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagex | Structured version Visualization version GIF version | ||
| Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-tagex | ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglex 36996 | . . 3 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | |
| 2 | p0ex 5359 | . . . 4 ⊢ {∅} ∈ V | |
| 3 | 2 | biantru 529 | . . 3 ⊢ (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
| 5 | unexb 7746 | . 2 ⊢ ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V) | |
| 6 | df-bj-tag 36998 | . . . 4 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
| 7 | 6 | eqcomi 2745 | . . 3 ⊢ (sngl 𝐴 ∪ {∅}) = tag 𝐴 |
| 8 | 7 | eleq1i 2826 | . 2 ⊢ ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V) |
| 9 | 4, 5, 8 | 3bitri 297 | 1 ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ∅c0 4313 {csn 4606 sngl bj-csngl 36988 tag bj-ctag 36997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4889 df-bj-sngl 36989 df-bj-tag 36998 |
| This theorem is referenced by: bj-xtagex 37012 |
| Copyright terms: Public domain | W3C validator |