Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagex Structured version   Visualization version   GIF version

Theorem bj-tagex 36171
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagex (𝐴 ∈ V ↔ tag 𝐴 ∈ V)

Proof of Theorem bj-tagex
StepHypRef Expression
1 bj-snglex 36157 . . 3 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
2 p0ex 5381 . . . 4 {∅} ∈ V
32biantru 528 . . 3 (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
41, 3bitri 274 . 2 (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
5 unexb 7737 . 2 ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V)
6 df-bj-tag 36159 . . . 4 tag 𝐴 = (sngl 𝐴 ∪ {∅})
76eqcomi 2739 . . 3 (sngl 𝐴 ∪ {∅}) = tag 𝐴
87eleq1i 2822 . 2 ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V)
94, 5, 83bitri 296 1 (𝐴 ∈ V ↔ tag 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2104  Vcvv 3472  cun 3945  c0 4321  {csn 4627  sngl bj-csngl 36149  tag bj-ctag 36158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-pw 4603  df-sn 4628  df-pr 4630  df-uni 4908  df-bj-sngl 36150  df-bj-tag 36159
This theorem is referenced by:  bj-xtagex  36173
  Copyright terms: Public domain W3C validator