Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagex Structured version   Visualization version   GIF version

Theorem bj-tagex 34914
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagex (𝐴 ∈ V ↔ tag 𝐴 ∈ V)

Proof of Theorem bj-tagex
StepHypRef Expression
1 bj-snglex 34900 . . 3 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
2 p0ex 5277 . . . 4 {∅} ∈ V
32biantru 533 . . 3 (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
41, 3bitri 278 . 2 (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
5 unexb 7533 . 2 ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V)
6 df-bj-tag 34902 . . . 4 tag 𝐴 = (sngl 𝐴 ∪ {∅})
76eqcomi 2746 . . 3 (sngl 𝐴 ∪ {∅}) = tag 𝐴
87eleq1i 2828 . 2 ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V)
94, 5, 83bitri 300 1 (𝐴 ∈ V ↔ tag 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2110  Vcvv 3408  cun 3864  c0 4237  {csn 4541  sngl bj-csngl 34892  tag bj-ctag 34901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-pw 4515  df-sn 4542  df-pr 4544  df-uni 4820  df-bj-sngl 34893  df-bj-tag 34902
This theorem is referenced by:  bj-xtagex  34916
  Copyright terms: Public domain W3C validator