| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagex | Structured version Visualization version GIF version | ||
| Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-tagex | ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglex 37017 | . . 3 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | |
| 2 | p0ex 5320 | . . . 4 ⊢ {∅} ∈ V | |
| 3 | 2 | biantru 529 | . . 3 ⊢ (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
| 5 | unexb 7680 | . 2 ⊢ ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V) | |
| 6 | df-bj-tag 37019 | . . . 4 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
| 7 | 6 | eqcomi 2740 | . . 3 ⊢ (sngl 𝐴 ∪ {∅}) = tag 𝐴 |
| 8 | 7 | eleq1i 2822 | . 2 ⊢ ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V) |
| 9 | 4, 5, 8 | 3bitri 297 | 1 ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4280 {csn 4573 sngl bj-csngl 37009 tag bj-ctag 37018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-bj-sngl 37010 df-bj-tag 37019 |
| This theorem is referenced by: bj-xtagex 37033 |
| Copyright terms: Public domain | W3C validator |