Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagex Structured version   Visualization version   GIF version

Theorem bj-tagex 36982
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagex (𝐴 ∈ V ↔ tag 𝐴 ∈ V)

Proof of Theorem bj-tagex
StepHypRef Expression
1 bj-snglex 36968 . . 3 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
2 p0ex 5342 . . . 4 {∅} ∈ V
32biantru 529 . . 3 (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
41, 3bitri 275 . 2 (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
5 unexb 7726 . 2 ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V)
6 df-bj-tag 36970 . . . 4 tag 𝐴 = (sngl 𝐴 ∪ {∅})
76eqcomi 2739 . . 3 (sngl 𝐴 ∪ {∅}) = tag 𝐴
87eleq1i 2820 . 2 ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V)
94, 5, 83bitri 297 1 (𝐴 ∈ V ↔ tag 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3450  cun 3915  c0 4299  {csn 4592  sngl bj-csngl 36960  tag bj-ctag 36969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-pw 4568  df-sn 4593  df-pr 4595  df-uni 4875  df-bj-sngl 36961  df-bj-tag 36970
This theorem is referenced by:  bj-xtagex  36984
  Copyright terms: Public domain W3C validator