![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagex | Structured version Visualization version GIF version |
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagex | ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglex 36157 | . . 3 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | |
2 | p0ex 5381 | . . . 4 ⊢ {∅} ∈ V | |
3 | 2 | biantru 528 | . . 3 ⊢ (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
5 | unexb 7737 | . 2 ⊢ ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V) | |
6 | df-bj-tag 36159 | . . . 4 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
7 | 6 | eqcomi 2739 | . . 3 ⊢ (sngl 𝐴 ∪ {∅}) = tag 𝐴 |
8 | 7 | eleq1i 2822 | . 2 ⊢ ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V) |
9 | 4, 5, 8 | 3bitri 296 | 1 ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2104 Vcvv 3472 ∪ cun 3945 ∅c0 4321 {csn 4627 sngl bj-csngl 36149 tag bj-ctag 36158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-pw 4603 df-sn 4628 df-pr 4630 df-uni 4908 df-bj-sngl 36150 df-bj-tag 36159 |
This theorem is referenced by: bj-xtagex 36173 |
Copyright terms: Public domain | W3C validator |