![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eltag | Structured version Visualization version GIF version |
Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-eltag | ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 36941 | . . 3 ⊢ tag 𝐵 = (sngl 𝐵 ∪ {∅}) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ tag 𝐵 ↔ 𝐴 ∈ (sngl 𝐵 ∪ {∅})) |
3 | elun 4176 | . 2 ⊢ (𝐴 ∈ (sngl 𝐵 ∪ {∅}) ↔ (𝐴 ∈ sngl 𝐵 ∨ 𝐴 ∈ {∅})) | |
4 | bj-elsngl 36934 | . . 3 ⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) | |
5 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
6 | 5 | elsn2 4687 | . . 3 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
7 | 4, 6 | orbi12i 913 | . 2 ⊢ ((𝐴 ∈ sngl 𝐵 ∨ 𝐴 ∈ {∅}) ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∪ cun 3974 ∅c0 4352 {csn 4648 sngl bj-csngl 36931 tag bj-ctag 36940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-bj-sngl 36932 df-bj-tag 36941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |