![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eltag | Structured version Visualization version GIF version |
Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-eltag | ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 36312 | . . 3 ⊢ tag 𝐵 = (sngl 𝐵 ∪ {∅}) | |
2 | 1 | eleq2i 2817 | . 2 ⊢ (𝐴 ∈ tag 𝐵 ↔ 𝐴 ∈ (sngl 𝐵 ∪ {∅})) |
3 | elun 4140 | . 2 ⊢ (𝐴 ∈ (sngl 𝐵 ∪ {∅}) ↔ (𝐴 ∈ sngl 𝐵 ∨ 𝐴 ∈ {∅})) | |
4 | bj-elsngl 36305 | . . 3 ⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) | |
5 | 0ex 5297 | . . . 4 ⊢ ∅ ∈ V | |
6 | 5 | elsn2 4659 | . . 3 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
7 | 4, 6 | orbi12i 911 | . 2 ⊢ ((𝐴 ∈ sngl 𝐵 ∨ 𝐴 ∈ {∅}) ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 ∪ cun 3938 ∅c0 4314 {csn 4620 sngl bj-csngl 36302 tag bj-ctag 36311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rex 3063 df-v 3468 df-dif 3943 df-un 3945 df-nul 4315 df-sn 4621 df-pr 4623 df-bj-sngl 36303 df-bj-tag 36312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |