Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eltag Structured version   Visualization version   GIF version

Theorem bj-eltag 37021
Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-eltag (𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-eltag
StepHypRef Expression
1 df-bj-tag 37019 . . 3 tag 𝐵 = (sngl 𝐵 ∪ {∅})
21eleq2i 2823 . 2 (𝐴 ∈ tag 𝐵𝐴 ∈ (sngl 𝐵 ∪ {∅}))
3 elun 4100 . 2 (𝐴 ∈ (sngl 𝐵 ∪ {∅}) ↔ (𝐴 ∈ sngl 𝐵𝐴 ∈ {∅}))
4 bj-elsngl 37012 . . 3 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
5 0ex 5243 . . . 4 ∅ ∈ V
65elsn2 4615 . . 3 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
74, 6orbi12i 914 . 2 ((𝐴 ∈ sngl 𝐵𝐴 ∈ {∅}) ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
82, 3, 73bitri 297 1 (𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2111  wrex 3056  cun 3895  c0 4280  {csn 4573  sngl bj-csngl 37009  tag bj-ctag 37018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-dif 3900  df-un 3902  df-nul 4281  df-sn 4574  df-pr 4576  df-bj-sngl 37010  df-bj-tag 37019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator