Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eltag Structured version   Visualization version   GIF version

Theorem bj-eltag 36314
Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-eltag (𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-eltag
StepHypRef Expression
1 df-bj-tag 36312 . . 3 tag 𝐵 = (sngl 𝐵 ∪ {∅})
21eleq2i 2817 . 2 (𝐴 ∈ tag 𝐵𝐴 ∈ (sngl 𝐵 ∪ {∅}))
3 elun 4140 . 2 (𝐴 ∈ (sngl 𝐵 ∪ {∅}) ↔ (𝐴 ∈ sngl 𝐵𝐴 ∈ {∅}))
4 bj-elsngl 36305 . . 3 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
5 0ex 5297 . . . 4 ∅ ∈ V
65elsn2 4659 . . 3 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
74, 6orbi12i 911 . 2 ((𝐴 ∈ sngl 𝐵𝐴 ∈ {∅}) ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
82, 3, 73bitri 297 1 (𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1533  wcel 2098  wrex 3062  cun 3938  c0 4314  {csn 4620  sngl bj-csngl 36302  tag bj-ctag 36311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rex 3063  df-v 3468  df-dif 3943  df-un 3945  df-nul 4315  df-sn 4621  df-pr 4623  df-bj-sngl 36303  df-bj-tag 36312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator