Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eltag | Structured version Visualization version GIF version |
Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-eltag | ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 35092 | . . 3 ⊢ tag 𝐵 = (sngl 𝐵 ∪ {∅}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ tag 𝐵 ↔ 𝐴 ∈ (sngl 𝐵 ∪ {∅})) |
3 | elun 4079 | . 2 ⊢ (𝐴 ∈ (sngl 𝐵 ∪ {∅}) ↔ (𝐴 ∈ sngl 𝐵 ∨ 𝐴 ∈ {∅})) | |
4 | bj-elsngl 35085 | . . 3 ⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) | |
5 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
6 | 5 | elsn2 4597 | . . 3 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
7 | 4, 6 | orbi12i 911 | . 2 ⊢ ((𝐴 ∈ sngl 𝐵 ∨ 𝐴 ∈ {∅}) ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
8 | 2, 3, 7 | 3bitri 296 | 1 ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∪ cun 3881 ∅c0 4253 {csn 4558 sngl bj-csngl 35082 tag bj-ctag 35091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-bj-sngl 35083 df-bj-tag 35092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |