Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eltag Structured version   Visualization version   GIF version

Theorem bj-eltag 35167
Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-eltag (𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-eltag
StepHypRef Expression
1 df-bj-tag 35165 . . 3 tag 𝐵 = (sngl 𝐵 ∪ {∅})
21eleq2i 2830 . 2 (𝐴 ∈ tag 𝐵𝐴 ∈ (sngl 𝐵 ∪ {∅}))
3 elun 4083 . 2 (𝐴 ∈ (sngl 𝐵 ∪ {∅}) ↔ (𝐴 ∈ sngl 𝐵𝐴 ∈ {∅}))
4 bj-elsngl 35158 . . 3 (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
5 0ex 5231 . . . 4 ∅ ∈ V
65elsn2 4600 . . 3 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
74, 6orbi12i 912 . 2 ((𝐴 ∈ sngl 𝐵𝐴 ∈ {∅}) ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
82, 3, 73bitri 297 1 (𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1539  wcel 2106  wrex 3065  cun 3885  c0 4256  {csn 4561  sngl bj-csngl 35155  tag bj-ctag 35164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564  df-bj-sngl 35156  df-bj-tag 35165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator