Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglsstag Structured version   Visualization version   GIF version

Theorem bj-snglsstag 36964
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglsstag sngl 𝐴 ⊆ tag 𝐴

Proof of Theorem bj-snglsstag
StepHypRef Expression
1 ssun1 4188 . 2 sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅})
2 df-bj-tag 36958 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
31, 2sseqtrri 4033 1 sngl 𝐴 ⊆ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3961  wss 3963  c0 4339  {csn 4631  sngl bj-csngl 36948  tag bj-ctag 36957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-bj-tag 36958
This theorem is referenced by:  bj-sngltagi  36965
  Copyright terms: Public domain W3C validator