Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglsstag Structured version   Visualization version   GIF version

Theorem bj-snglsstag 33297
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglsstag sngl 𝐴 ⊆ tag 𝐴

Proof of Theorem bj-snglsstag
StepHypRef Expression
1 ssun1 3986 . 2 sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅})
2 df-bj-tag 33291 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
31, 2sseqtr4i 3846 1 sngl 𝐴 ⊆ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3778  wss 3780  c0 4127  {csn 4381  sngl bj-csngl 33281  tag bj-ctag 33290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-v 3404  df-un 3785  df-in 3787  df-ss 3794  df-bj-tag 33291
This theorem is referenced by:  bj-sngltagi  33298
  Copyright terms: Public domain W3C validator