Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglsstag Structured version   Visualization version   GIF version

Theorem bj-snglsstag 35171
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglsstag sngl 𝐴 ⊆ tag 𝐴

Proof of Theorem bj-snglsstag
StepHypRef Expression
1 ssun1 4106 . 2 sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅})
2 df-bj-tag 35165 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
31, 2sseqtrri 3958 1 sngl 𝐴 ⊆ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3885  wss 3887  c0 4256  {csn 4561  sngl bj-csngl 35155  tag bj-ctag 35164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-bj-tag 35165
This theorem is referenced by:  bj-sngltagi  35172
  Copyright terms: Public domain W3C validator