Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglsstag | Structured version Visualization version GIF version |
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-snglsstag | ⊢ sngl 𝐴 ⊆ tag 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4103 | . 2 ⊢ sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅}) | |
2 | df-bj-tag 35067 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
3 | 1, 2 | sseqtrri 3955 | 1 ⊢ sngl 𝐴 ⊆ tag 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3882 ⊆ wss 3884 ∅c0 4254 {csn 4558 sngl bj-csngl 35057 tag bj-ctag 35066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-un 3889 df-in 3891 df-ss 3901 df-bj-tag 35067 |
This theorem is referenced by: bj-sngltagi 35074 |
Copyright terms: Public domain | W3C validator |