Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglsstag Structured version   Visualization version   GIF version

Theorem bj-snglsstag 34814
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglsstag sngl 𝐴 ⊆ tag 𝐴

Proof of Theorem bj-snglsstag
StepHypRef Expression
1 ssun1 4062 . 2 sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅})
2 df-bj-tag 34808 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
31, 2sseqtrri 3914 1 sngl 𝐴 ⊆ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3841  wss 3843  c0 4211  {csn 4516  sngl bj-csngl 34798  tag bj-ctag 34807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-bj-tag 34808
This theorem is referenced by:  bj-sngltagi  34815
  Copyright terms: Public domain W3C validator