| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglsstag | Structured version Visualization version GIF version | ||
| Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-snglsstag | ⊢ sngl 𝐴 ⊆ tag 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4158 | . 2 ⊢ sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅}) | |
| 2 | df-bj-tag 36998 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
| 3 | 1, 2 | sseqtrri 4013 | 1 ⊢ sngl 𝐴 ⊆ tag 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 sngl bj-csngl 36988 tag bj-ctag 36997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-bj-tag 36998 |
| This theorem is referenced by: bj-sngltagi 37005 |
| Copyright terms: Public domain | W3C validator |