Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglsstag Structured version   Visualization version   GIF version

Theorem bj-snglsstag 36969
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglsstag sngl 𝐴 ⊆ tag 𝐴

Proof of Theorem bj-snglsstag
StepHypRef Expression
1 ssun1 4141 . 2 sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅})
2 df-bj-tag 36963 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
31, 2sseqtrri 3996 1 sngl 𝐴 ⊆ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3912  wss 3914  c0 4296  {csn 4589  sngl bj-csngl 36953  tag bj-ctag 36962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-bj-tag 36963
This theorem is referenced by:  bj-sngltagi  36970
  Copyright terms: Public domain W3C validator