![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tageq | Structured version Visualization version GIF version |
Description: Substitution property for tag. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tageq | ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sngleq 36933 | . . 3 ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) | |
2 | 1 | uneq1d 4190 | . 2 ⊢ (𝐴 = 𝐵 → (sngl 𝐴 ∪ {∅}) = (sngl 𝐵 ∪ {∅})) |
3 | df-bj-tag 36941 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
4 | df-bj-tag 36941 | . 2 ⊢ tag 𝐵 = (sngl 𝐵 ∪ {∅}) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3974 ∅c0 4352 {csn 4648 sngl bj-csngl 36931 tag bj-ctag 36940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-un 3981 df-bj-sngl 36932 df-bj-tag 36941 |
This theorem is referenced by: bj-xtageq 36954 |
Copyright terms: Public domain | W3C validator |