Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tageq Structured version   Visualization version   GIF version

Theorem bj-tageq 35166
Description: Substitution property for tag. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tageq (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)

Proof of Theorem bj-tageq
StepHypRef Expression
1 bj-sngleq 35157 . . 3 (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
21uneq1d 4096 . 2 (𝐴 = 𝐵 → (sngl 𝐴 ∪ {∅}) = (sngl 𝐵 ∪ {∅}))
3 df-bj-tag 35165 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
4 df-bj-tag 35165 . 2 tag 𝐵 = (sngl 𝐵 ∪ {∅})
52, 3, 43eqtr4g 2803 1 (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3885  c0 4256  {csn 4561  sngl bj-csngl 35155  tag bj-ctag 35164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-un 3892  df-bj-sngl 35156  df-bj-tag 35165
This theorem is referenced by:  bj-xtageq  35178
  Copyright terms: Public domain W3C validator