Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tageq Structured version   Visualization version   GIF version

Theorem bj-tageq 35093
Description: Substitution property for tag. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tageq (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)

Proof of Theorem bj-tageq
StepHypRef Expression
1 bj-sngleq 35084 . . 3 (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
21uneq1d 4092 . 2 (𝐴 = 𝐵 → (sngl 𝐴 ∪ {∅}) = (sngl 𝐵 ∪ {∅}))
3 df-bj-tag 35092 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
4 df-bj-tag 35092 . 2 tag 𝐵 = (sngl 𝐵 ∪ {∅})
52, 3, 43eqtr4g 2804 1 (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3881  c0 4253  {csn 4558  sngl bj-csngl 35082  tag bj-ctag 35091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-un 3888  df-bj-sngl 35083  df-bj-tag 35092
This theorem is referenced by:  bj-xtageq  35105
  Copyright terms: Public domain W3C validator