Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tageq Structured version   Visualization version   GIF version

Theorem bj-tageq 36971
Description: Substitution property for tag. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tageq (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)

Proof of Theorem bj-tageq
StepHypRef Expression
1 bj-sngleq 36962 . . 3 (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
21uneq1d 4133 . 2 (𝐴 = 𝐵 → (sngl 𝐴 ∪ {∅}) = (sngl 𝐵 ∪ {∅}))
3 df-bj-tag 36970 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
4 df-bj-tag 36970 . 2 tag 𝐵 = (sngl 𝐵 ∪ {∅})
52, 3, 43eqtr4g 2790 1 (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3915  c0 4299  {csn 4592  sngl bj-csngl 36960  tag bj-ctag 36969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3452  df-un 3922  df-bj-sngl 36961  df-bj-tag 36970
This theorem is referenced by:  bj-xtageq  36983
  Copyright terms: Public domain W3C validator