![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagss | Structured version Visualization version GIF version |
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagss | ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 36160 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
2 | bj-snglss 36155 | . . 3 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
3 | 0elpw 5354 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
4 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snss 4789 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴) |
6 | 3, 5 | mpbi 229 | . . 3 ⊢ {∅} ⊆ 𝒫 𝐴 |
7 | 2, 6 | unssi 4185 | . 2 ⊢ (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴 |
8 | 1, 7 | eqsstri 4016 | 1 ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 sngl bj-csngl 36150 tag bj-ctag 36159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-pw 4604 df-sn 4629 df-pr 4631 df-bj-sngl 36151 df-bj-tag 36160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |