Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 36975
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 36970 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 36965 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5314 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5265 . . . . 5 ∅ ∈ V
54snss 4752 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 230 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4157 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 3996 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cun 3915  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  sngl bj-csngl 36960  tag bj-ctag 36969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-pw 4568  df-sn 4593  df-pr 4595  df-bj-sngl 36961  df-bj-tag 36970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator