Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 36946
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 36941 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 36936 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5374 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5325 . . . . 5 ∅ ∈ V
54snss 4810 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 230 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4214 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 4043 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  sngl bj-csngl 36931  tag bj-ctag 36940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651  df-bj-sngl 36932  df-bj-tag 36941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator