Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 36165
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 36160 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 36155 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5354 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5307 . . . . 5 ∅ ∈ V
54snss 4789 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 229 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4185 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 4016 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  cun 3946  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628  sngl bj-csngl 36150  tag bj-ctag 36159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rex 3070  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-pw 4604  df-sn 4629  df-pr 4631  df-bj-sngl 36151  df-bj-tag 36160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator