Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagss | Structured version Visualization version GIF version |
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagss | ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 34726 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
2 | bj-snglss 34721 | . . 3 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
3 | 0elpw 5228 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
4 | 0ex 5181 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snss 4679 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴) |
6 | 3, 5 | mpbi 233 | . . 3 ⊢ {∅} ⊆ 𝒫 𝐴 |
7 | 2, 6 | unssi 4092 | . 2 ⊢ (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴 |
8 | 1, 7 | eqsstri 3928 | 1 ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ∪ cun 3858 ⊆ wss 3860 ∅c0 4227 𝒫 cpw 4497 {csn 4525 sngl bj-csngl 34716 tag bj-ctag 34725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-pw 4499 df-sn 4526 df-pr 4528 df-bj-sngl 34717 df-bj-tag 34726 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |