Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 36963
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 36958 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 36953 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5362 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5313 . . . . 5 ∅ ∈ V
54snss 4790 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 230 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4201 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 4030 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cun 3961  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631  sngl bj-csngl 36948  tag bj-ctag 36957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-pw 4607  df-sn 4632  df-pr 4634  df-bj-sngl 36949  df-bj-tag 36958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator