| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagss | Structured version Visualization version GIF version | ||
| Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-tagss | ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-tag 36993 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
| 2 | bj-snglss 36988 | . . 3 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
| 3 | 0elpw 5326 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 4 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 4 | snss 4761 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴) |
| 6 | 3, 5 | mpbi 230 | . . 3 ⊢ {∅} ⊆ 𝒫 𝐴 |
| 7 | 2, 6 | unssi 4166 | . 2 ⊢ (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴 |
| 8 | 1, 7 | eqsstri 4005 | 1 ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 sngl bj-csngl 36983 tag bj-ctag 36992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 df-pr 4604 df-bj-sngl 36984 df-bj-tag 36993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |