Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 36968
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 36963 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 36958 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5311 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5262 . . . . 5 ∅ ∈ V
54snss 4749 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 230 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4154 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 3993 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cun 3912  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  sngl bj-csngl 36953  tag bj-ctag 36962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-pw 4565  df-sn 4590  df-pr 4592  df-bj-sngl 36954  df-bj-tag 36963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator