Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagss | Structured version Visualization version GIF version |
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagss | ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 35092 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
2 | bj-snglss 35087 | . . 3 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
3 | 0elpw 5273 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
4 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snss 4716 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴) |
6 | 3, 5 | mpbi 229 | . . 3 ⊢ {∅} ⊆ 𝒫 𝐴 |
7 | 2, 6 | unssi 4115 | . 2 ⊢ (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴 |
8 | 1, 7 | eqsstri 3951 | 1 ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 sngl bj-csngl 35082 tag bj-ctag 35091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-bj-sngl 35083 df-bj-tag 35092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |