Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 36164
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 36159 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 36154 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5353 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5306 . . . . 5 ∅ ∈ V
54snss 4788 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 229 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4184 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 4015 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  cun 3945  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627  sngl bj-csngl 36149  tag bj-ctag 36158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rex 3069  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-pw 4603  df-sn 4628  df-pr 4630  df-bj-sngl 36150  df-bj-tag 36159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator