Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagss | Structured version Visualization version GIF version |
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagss | ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 35165 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
2 | bj-snglss 35160 | . . 3 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
3 | 0elpw 5278 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
4 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snss 4719 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴) |
6 | 3, 5 | mpbi 229 | . . 3 ⊢ {∅} ⊆ 𝒫 𝐴 |
7 | 2, 6 | unssi 4119 | . 2 ⊢ (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴 |
8 | 1, 7 | eqsstri 3955 | 1 ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 sngl bj-csngl 35155 tag bj-ctag 35164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-bj-sngl 35156 df-bj-tag 35165 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |