![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagss | Structured version Visualization version GIF version |
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagss | ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-tag 36941 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
2 | bj-snglss 36936 | . . 3 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | |
3 | 0elpw 5374 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
4 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snss 4810 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴) |
6 | 3, 5 | mpbi 230 | . . 3 ⊢ {∅} ⊆ 𝒫 𝐴 |
7 | 2, 6 | unssi 4214 | . 2 ⊢ (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴 |
8 | 1, 7 | eqsstri 4043 | 1 ⊢ tag 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 sngl bj-csngl 36931 tag bj-ctag 36940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-pr 4651 df-bj-sngl 36932 df-bj-tag 36941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |