Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 37024
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 37019 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 37014 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 5292 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 5243 . . . . 5 ∅ ∈ V
54snss 4734 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 230 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 4138 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 3976 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573  sngl bj-csngl 37009  tag bj-ctag 37018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-pw 4549  df-sn 4574  df-pr 4576  df-bj-sngl 37010  df-bj-tag 37019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator