Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0eltag | Structured version Visualization version GIF version |
Description: The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-0eltag | ⊢ ∅ ∈ tag 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
2 | 1 | snid 4594 | . . . 4 ⊢ ∅ ∈ {∅} |
3 | 2 | olci 862 | . . 3 ⊢ (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅}) |
4 | elun 4079 | . . 3 ⊢ (∅ ∈ (sngl 𝐴 ∪ {∅}) ↔ (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅})) | |
5 | 3, 4 | mpbir 230 | . 2 ⊢ ∅ ∈ (sngl 𝐴 ∪ {∅}) |
6 | df-bj-tag 35092 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
7 | 5, 6 | eleqtrri 2838 | 1 ⊢ ∅ ∈ tag 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 ∈ wcel 2108 ∪ cun 3881 ∅c0 4253 {csn 4558 sngl bj-csngl 35082 tag bj-ctag 35091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-bj-tag 35092 |
This theorem is referenced by: bj-tagn0 35096 |
Copyright terms: Public domain | W3C validator |