Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0eltag Structured version   Visualization version   GIF version

Theorem bj-0eltag 35095
Description: The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0eltag ∅ ∈ tag 𝐴

Proof of Theorem bj-0eltag
StepHypRef Expression
1 0ex 5226 . . . . 5 ∅ ∈ V
21snid 4594 . . . 4 ∅ ∈ {∅}
32olci 862 . . 3 (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅})
4 elun 4079 . . 3 (∅ ∈ (sngl 𝐴 ∪ {∅}) ↔ (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅}))
53, 4mpbir 230 . 2 ∅ ∈ (sngl 𝐴 ∪ {∅})
6 df-bj-tag 35092 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
75, 6eleqtrri 2838 1 ∅ ∈ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  wo 843  wcel 2108  cun 3881  c0 4253  {csn 4558  sngl bj-csngl 35082  tag bj-ctag 35091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-bj-tag 35092
This theorem is referenced by:  bj-tagn0  35096
  Copyright terms: Public domain W3C validator