Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0eltag Structured version   Visualization version   GIF version

Theorem bj-0eltag 36973
Description: The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0eltag ∅ ∈ tag 𝐴

Proof of Theorem bj-0eltag
StepHypRef Expression
1 0ex 5265 . . . . 5 ∅ ∈ V
21snid 4629 . . . 4 ∅ ∈ {∅}
32olci 866 . . 3 (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅})
4 elun 4119 . . 3 (∅ ∈ (sngl 𝐴 ∪ {∅}) ↔ (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅}))
53, 4mpbir 231 . 2 ∅ ∈ (sngl 𝐴 ∪ {∅})
6 df-bj-tag 36970 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
75, 6eleqtrri 2828 1 ∅ ∈ tag 𝐴
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2109  cun 3915  c0 4299  {csn 4592  sngl bj-csngl 36960  tag bj-ctag 36969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-bj-tag 36970
This theorem is referenced by:  bj-tagn0  36974
  Copyright terms: Public domain W3C validator