| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0eltag | Structured version Visualization version GIF version | ||
| Description: The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-0eltag | ⊢ ∅ ∈ tag 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4638 | . . . 4 ⊢ ∅ ∈ {∅} |
| 3 | 2 | olci 866 | . . 3 ⊢ (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅}) |
| 4 | elun 4128 | . . 3 ⊢ (∅ ∈ (sngl 𝐴 ∪ {∅}) ↔ (∅ ∈ sngl 𝐴 ∨ ∅ ∈ {∅})) | |
| 5 | 3, 4 | mpbir 231 | . 2 ⊢ ∅ ∈ (sngl 𝐴 ∪ {∅}) |
| 6 | df-bj-tag 36993 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
| 7 | 5, 6 | eleqtrri 2833 | 1 ⊢ ∅ ∈ tag 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∈ wcel 2108 ∪ cun 3924 ∅c0 4308 {csn 4601 sngl bj-csngl 36983 tag bj-ctag 36992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-bj-tag 36993 |
| This theorem is referenced by: bj-tagn0 36997 |
| Copyright terms: Public domain | W3C validator |