MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setc2ohom Structured version   Visualization version   GIF version

Theorem setc2ohom 18002
Description: (SetCat‘2o) is a category (provable from setccat 17992 and 2oex 8396) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 18001. Notably, the empty set is simultaneously an object (setc2obas 18001), an identity morphism from to (setcid 17993 or thincid 49543), and a non-identity morphism from to 1o. See cat1lem 18003 and cat1 18004 for a more general statement. This category is also thin (setc2othin 49577), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 49575 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
setc2ohom.c 𝐶 = (SetCat‘2o)
setc2ohom.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
setc2ohom ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o))

Proof of Theorem setc2ohom
StepHypRef Expression
1 f0 6704 . . 3 ∅:∅⟶∅
2 setc2ohom.c . . . . 5 𝐶 = (SetCat‘2o)
3 2oex 8396 . . . . . 6 2o ∈ V
43a1i 11 . . . . 5 (⊤ → 2o ∈ V)
5 setc2ohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
6 0ex 5243 . . . . . . . 8 ∅ ∈ V
76prid1 4712 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8393 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2830 . . . . . 6 ∅ ∈ 2o
109a1i 11 . . . . 5 (⊤ → ∅ ∈ 2o)
112, 4, 5, 10, 10elsetchom 17988 . . . 4 (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅))
1211mptru 1548 . . 3 (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)
131, 12mpbir 231 . 2 ∅ ∈ (∅𝐻∅)
14 f0 6704 . . 3 ∅:∅⟶1o
15 1oex 8395 . . . . . . . 8 1o ∈ V
1615prid2 4713 . . . . . . 7 1o ∈ {∅, 1o}
1716, 8eleqtrri 2830 . . . . . 6 1o ∈ 2o
1817a1i 11 . . . . 5 (⊤ → 1o ∈ 2o)
192, 4, 5, 10, 18elsetchom 17988 . . . 4 (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o))
2019mptru 1548 . . 3 (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)
2114, 20mpbir 231 . 2 ∅ ∈ (∅𝐻1o)
2213, 21elini 4146 1 ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wtru 1542  wcel 2111  Vcvv 3436  cin 3896  c0 4280  {cpr 4575  wf 6477  cfv 6481  (class class class)co 7346  1oc1o 8378  2oc2o 8379  Hom chom 17172  SetCatcsetc 17982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-setc 17983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator