| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setc2ohom | Structured version Visualization version GIF version | ||
| Description: (SetCat‘2o) is a category (provable from setccat 17992 and 2oex 8399) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 18001. Notably, the empty set ∅ is simultaneously an object (setc2obas 18001), an identity morphism from ∅ to ∅ (setcid 17993 or thincid 49421), and a non-identity morphism from ∅ to 1o. See cat1lem 18003 and cat1 18004 for a more general statement. This category is also thin (setc2othin 49455), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 49453 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| setc2ohom.c | ⊢ 𝐶 = (SetCat‘2o) |
| setc2ohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| setc2ohom | ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6705 | . . 3 ⊢ ∅:∅⟶∅ | |
| 2 | setc2ohom.c | . . . . 5 ⊢ 𝐶 = (SetCat‘2o) | |
| 3 | 2oex 8399 | . . . . . 6 ⊢ 2o ∈ V | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → 2o ∈ V) |
| 5 | setc2ohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 0ex 5246 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4714 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8396 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2827 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ∅ ∈ 2o) |
| 11 | 2, 4, 5, 10, 10 | elsetchom 17988 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)) |
| 12 | 11 | mptru 1547 | . . 3 ⊢ (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅) |
| 13 | 1, 12 | mpbir 231 | . 2 ⊢ ∅ ∈ (∅𝐻∅) |
| 14 | f0 6705 | . . 3 ⊢ ∅:∅⟶1o | |
| 15 | 1oex 8398 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 16 | 15 | prid2 4715 | . . . . . . 7 ⊢ 1o ∈ {∅, 1o} |
| 17 | 16, 8 | eleqtrri 2827 | . . . . . 6 ⊢ 1o ∈ 2o |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → 1o ∈ 2o) |
| 19 | 2, 4, 5, 10, 18 | elsetchom 17988 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)) |
| 20 | 19 | mptru 1547 | . . 3 ⊢ (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o) |
| 21 | 14, 20 | mpbir 231 | . 2 ⊢ ∅ ∈ (∅𝐻1o) |
| 22 | 13, 21 | elini 4150 | 1 ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ∅c0 4284 {cpr 4579 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 2oc2o 8382 Hom chom 17172 SetCatcsetc 17982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-setc 17983 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |