![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setc2ohom | Structured version Visualization version GIF version |
Description: (SetCat‘2o) is a category (provable from setccat 17976 and 2oex 8424) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 17985. Notably, the empty set ∅ is simultaneously an object (setc2obas 17985), an identity morphism from ∅ to ∅ (setcid 17977 or thincid 47139), and a non-identity morphism from ∅ to 1o. See cat1lem 17987 and cat1 17988 for a more general statement. This category is also thin (setc2othin 47162), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 47160 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
setc2ohom.c | ⊢ 𝐶 = (SetCat‘2o) |
setc2ohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
setc2ohom | ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6724 | . . 3 ⊢ ∅:∅⟶∅ | |
2 | setc2ohom.c | . . . . 5 ⊢ 𝐶 = (SetCat‘2o) | |
3 | 2oex 8424 | . . . . . 6 ⊢ 2o ∈ V | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → 2o ∈ V) |
5 | setc2ohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | 0ex 5265 | . . . . . . . 8 ⊢ ∅ ∈ V | |
7 | 6 | prid1 4724 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
8 | df2o3 8421 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleqtrri 2833 | . . . . . 6 ⊢ ∅ ∈ 2o |
10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ∅ ∈ 2o) |
11 | 2, 4, 5, 10, 10 | elsetchom 17972 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)) |
12 | 11 | mptru 1549 | . . 3 ⊢ (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅) |
13 | 1, 12 | mpbir 230 | . 2 ⊢ ∅ ∈ (∅𝐻∅) |
14 | f0 6724 | . . 3 ⊢ ∅:∅⟶1o | |
15 | 1oex 8423 | . . . . . . . 8 ⊢ 1o ∈ V | |
16 | 15 | prid2 4725 | . . . . . . 7 ⊢ 1o ∈ {∅, 1o} |
17 | 16, 8 | eleqtrri 2833 | . . . . . 6 ⊢ 1o ∈ 2o |
18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → 1o ∈ 2o) |
19 | 2, 4, 5, 10, 18 | elsetchom 17972 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)) |
20 | 19 | mptru 1549 | . . 3 ⊢ (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o) |
21 | 14, 20 | mpbir 230 | . 2 ⊢ ∅ ∈ (∅𝐻1o) |
22 | 13, 21 | elini 4154 | 1 ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 Vcvv 3444 ∩ cin 3910 ∅c0 4283 {cpr 4589 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 1oc1o 8406 2oc2o 8407 Hom chom 17149 SetCatcsetc 17966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-er 8651 df-map 8770 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-slot 17059 df-ndx 17071 df-base 17089 df-hom 17162 df-cco 17163 df-setc 17967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |