| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setc2ohom | Structured version Visualization version GIF version | ||
| Description: (SetCat‘2o) is a category (provable from setccat 18027 and 2oex 8422) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 18036. Notably, the empty set ∅ is simultaneously an object (setc2obas 18036), an identity morphism from ∅ to ∅ (setcid 18028 or thincid 49414), and a non-identity morphism from ∅ to 1o. See cat1lem 18038 and cat1 18039 for a more general statement. This category is also thin (setc2othin 49448), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 49446 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| setc2ohom.c | ⊢ 𝐶 = (SetCat‘2o) |
| setc2ohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| setc2ohom | ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6723 | . . 3 ⊢ ∅:∅⟶∅ | |
| 2 | setc2ohom.c | . . . . 5 ⊢ 𝐶 = (SetCat‘2o) | |
| 3 | 2oex 8422 | . . . . . 6 ⊢ 2o ∈ V | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → 2o ∈ V) |
| 5 | setc2ohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 0ex 5257 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4722 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8419 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2827 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ∅ ∈ 2o) |
| 11 | 2, 4, 5, 10, 10 | elsetchom 18023 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)) |
| 12 | 11 | mptru 1547 | . . 3 ⊢ (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅) |
| 13 | 1, 12 | mpbir 231 | . 2 ⊢ ∅ ∈ (∅𝐻∅) |
| 14 | f0 6723 | . . 3 ⊢ ∅:∅⟶1o | |
| 15 | 1oex 8421 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 16 | 15 | prid2 4723 | . . . . . . 7 ⊢ 1o ∈ {∅, 1o} |
| 17 | 16, 8 | eleqtrri 2827 | . . . . . 6 ⊢ 1o ∈ 2o |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → 1o ∈ 2o) |
| 19 | 2, 4, 5, 10, 18 | elsetchom 18023 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)) |
| 20 | 19 | mptru 1547 | . . 3 ⊢ (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o) |
| 21 | 14, 20 | mpbir 231 | . 2 ⊢ ∅ ∈ (∅𝐻1o) |
| 22 | 13, 21 | elini 4158 | 1 ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ∅c0 4292 {cpr 4587 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 2oc2o 8405 Hom chom 17207 SetCatcsetc 18017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-setc 18018 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |