| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setc2ohom | Structured version Visualization version GIF version | ||
| Description: (SetCat‘2o) is a category (provable from setccat 18047 and 2oex 8445) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 18056. Notably, the empty set ∅ is simultaneously an object (setc2obas 18056), an identity morphism from ∅ to ∅ (setcid 18048 or thincid 49418), and a non-identity morphism from ∅ to 1o. See cat1lem 18058 and cat1 18059 for a more general statement. This category is also thin (setc2othin 49452), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 49450 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| setc2ohom.c | ⊢ 𝐶 = (SetCat‘2o) |
| setc2ohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| setc2ohom | ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6741 | . . 3 ⊢ ∅:∅⟶∅ | |
| 2 | setc2ohom.c | . . . . 5 ⊢ 𝐶 = (SetCat‘2o) | |
| 3 | 2oex 8445 | . . . . . 6 ⊢ 2o ∈ V | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → 2o ∈ V) |
| 5 | setc2ohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 0ex 5262 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 4726 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8442 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2827 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ∅ ∈ 2o) |
| 11 | 2, 4, 5, 10, 10 | elsetchom 18043 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)) |
| 12 | 11 | mptru 1547 | . . 3 ⊢ (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅) |
| 13 | 1, 12 | mpbir 231 | . 2 ⊢ ∅ ∈ (∅𝐻∅) |
| 14 | f0 6741 | . . 3 ⊢ ∅:∅⟶1o | |
| 15 | 1oex 8444 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 16 | 15 | prid2 4727 | . . . . . . 7 ⊢ 1o ∈ {∅, 1o} |
| 17 | 16, 8 | eleqtrri 2827 | . . . . . 6 ⊢ 1o ∈ 2o |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → 1o ∈ 2o) |
| 19 | 2, 4, 5, 10, 18 | elsetchom 18043 | . . . 4 ⊢ (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)) |
| 20 | 19 | mptru 1547 | . . 3 ⊢ (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o) |
| 21 | 14, 20 | mpbir 231 | . 2 ⊢ ∅ ∈ (∅𝐻1o) |
| 22 | 13, 21 | elini 4162 | 1 ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 {cpr 4591 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 2oc2o 8428 Hom chom 17231 SetCatcsetc 18037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-setc 18038 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |