MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setc2ohom Structured version   Visualization version   GIF version

Theorem setc2ohom 18162
Description: (SetCat‘2o) is a category (provable from setccat 18152 and 2oex 8533) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 18161. Notably, the empty set is simultaneously an object (setc2obas 18161), an identity morphism from to (setcid 18153 or thincid 48700), and a non-identity morphism from to 1o. See cat1lem 18163 and cat1 18164 for a more general statement. This category is also thin (setc2othin 48723), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 48721 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
setc2ohom.c 𝐶 = (SetCat‘2o)
setc2ohom.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
setc2ohom ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o))

Proof of Theorem setc2ohom
StepHypRef Expression
1 f0 6802 . . 3 ∅:∅⟶∅
2 setc2ohom.c . . . . 5 𝐶 = (SetCat‘2o)
3 2oex 8533 . . . . . 6 2o ∈ V
43a1i 11 . . . . 5 (⊤ → 2o ∈ V)
5 setc2ohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
6 0ex 5325 . . . . . . . 8 ∅ ∈ V
76prid1 4787 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8530 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2843 . . . . . 6 ∅ ∈ 2o
109a1i 11 . . . . 5 (⊤ → ∅ ∈ 2o)
112, 4, 5, 10, 10elsetchom 18148 . . . 4 (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅))
1211mptru 1544 . . 3 (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)
131, 12mpbir 231 . 2 ∅ ∈ (∅𝐻∅)
14 f0 6802 . . 3 ∅:∅⟶1o
15 1oex 8532 . . . . . . . 8 1o ∈ V
1615prid2 4788 . . . . . . 7 1o ∈ {∅, 1o}
1716, 8eleqtrri 2843 . . . . . 6 1o ∈ 2o
1817a1i 11 . . . . 5 (⊤ → 1o ∈ 2o)
192, 4, 5, 10, 18elsetchom 18148 . . . 4 (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o))
2019mptru 1544 . . 3 (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)
2114, 20mpbir 231 . 2 ∅ ∈ (∅𝐻1o)
2213, 21elini 4222 1 ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wtru 1538  wcel 2108  Vcvv 3488  cin 3975  c0 4352  {cpr 4650  wf 6569  cfv 6573  (class class class)co 7448  1oc1o 8515  2oc2o 8516  Hom chom 17322  SetCatcsetc 18142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-setc 18143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator