MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setc2ohom Structured version   Visualization version   GIF version

Theorem setc2ohom 18141
Description: (SetCat‘2o) is a category (provable from setccat 18131 and 2oex 8518) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 18140. Notably, the empty set is simultaneously an object (setc2obas 18140), an identity morphism from to (setcid 18132 or thincid 49106), and a non-identity morphism from to 1o. See cat1lem 18142 and cat1 18143 for a more general statement. This category is also thin (setc2othin 49138), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 49136 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
setc2ohom.c 𝐶 = (SetCat‘2o)
setc2ohom.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
setc2ohom ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o))

Proof of Theorem setc2ohom
StepHypRef Expression
1 f0 6788 . . 3 ∅:∅⟶∅
2 setc2ohom.c . . . . 5 𝐶 = (SetCat‘2o)
3 2oex 8518 . . . . . 6 2o ∈ V
43a1i 11 . . . . 5 (⊤ → 2o ∈ V)
5 setc2ohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
6 0ex 5306 . . . . . . . 8 ∅ ∈ V
76prid1 4761 . . . . . . 7 ∅ ∈ {∅, 1o}
8 df2o3 8515 . . . . . . 7 2o = {∅, 1o}
97, 8eleqtrri 2839 . . . . . 6 ∅ ∈ 2o
109a1i 11 . . . . 5 (⊤ → ∅ ∈ 2o)
112, 4, 5, 10, 10elsetchom 18127 . . . 4 (⊤ → (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅))
1211mptru 1546 . . 3 (∅ ∈ (∅𝐻∅) ↔ ∅:∅⟶∅)
131, 12mpbir 231 . 2 ∅ ∈ (∅𝐻∅)
14 f0 6788 . . 3 ∅:∅⟶1o
15 1oex 8517 . . . . . . . 8 1o ∈ V
1615prid2 4762 . . . . . . 7 1o ∈ {∅, 1o}
1716, 8eleqtrri 2839 . . . . . 6 1o ∈ 2o
1817a1i 11 . . . . 5 (⊤ → 1o ∈ 2o)
192, 4, 5, 10, 18elsetchom 18127 . . . 4 (⊤ → (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o))
2019mptru 1546 . . 3 (∅ ∈ (∅𝐻1o) ↔ ∅:∅⟶1o)
2114, 20mpbir 231 . 2 ∅ ∈ (∅𝐻1o)
2213, 21elini 4198 1 ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wtru 1540  wcel 2107  Vcvv 3479  cin 3949  c0 4332  {cpr 4627  wf 6556  cfv 6560  (class class class)co 7432  1oc1o 8500  2oc2o 8501  Hom chom 17309  SetCatcsetc 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-hom 17322  df-cco 17323  df-setc 18122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator