MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1 Structured version   Visualization version   GIF version

Theorem cat1 18164
Description: The definition of category df-cat 17726 does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. See setc2obas 18161 and setc2ohom 18162 for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa 18093 and its subsection. (Contributed by Zhi Wang, 15-Sep-2024.)
Assertion
Ref Expression
cat1 𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))
Distinct variable group:   𝑏,𝑐,,𝑤,𝑥,𝑦,𝑧

Proof of Theorem cat1
StepHypRef Expression
1 2on 8536 . . 3 2o ∈ On
2 eqid 2740 . . . 4 (SetCat‘2o) = (SetCat‘2o)
32setccat 18152 . . 3 (2o ∈ On → (SetCat‘2o) ∈ Cat)
41, 3ax-mp 5 . 2 (SetCat‘2o) ∈ Cat
51a1i 11 . . . 4 (⊤ → 2o ∈ On)
6 eqid 2740 . . . 4 (Base‘(SetCat‘2o)) = (Base‘(SetCat‘2o))
7 eqid 2740 . . . 4 (Hom ‘(SetCat‘2o)) = (Hom ‘(SetCat‘2o))
8 0ex 5325 . . . . . . 7 ∅ ∈ V
98prid1 4787 . . . . . 6 ∅ ∈ {∅, {∅}}
10 df2o2 8531 . . . . . 6 2o = {∅, {∅}}
119, 10eleqtrri 2843 . . . . 5 ∅ ∈ 2o
1211a1i 11 . . . 4 (⊤ → ∅ ∈ 2o)
13 p0ex 5402 . . . . . . 7 {∅} ∈ V
1413prid2 4788 . . . . . 6 {∅} ∈ {∅, {∅}}
1514, 10eleqtrri 2843 . . . . 5 {∅} ∈ 2o
1615a1i 11 . . . 4 (⊤ → {∅} ∈ 2o)
17 0nep0 5376 . . . . 5 ∅ ≠ {∅}
1817a1i 11 . . . 4 (⊤ → ∅ ≠ {∅})
192, 5, 6, 7, 12, 16, 18cat1lem 18163 . . 3 (⊤ → ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
2019mptru 1544 . 2 𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))
21 fvexd 6935 . . . 4 (𝑐 = (SetCat‘2o) → (Base‘𝑐) ∈ V)
22 fveq2 6920 . . . 4 (𝑐 = (SetCat‘2o) → (Base‘𝑐) = (Base‘(SetCat‘2o)))
23 fvexd 6935 . . . . 5 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → (Hom ‘𝑐) ∈ V)
24 fveq2 6920 . . . . . 6 (𝑐 = (SetCat‘2o) → (Hom ‘𝑐) = (Hom ‘(SetCat‘2o)))
2524adantr 480 . . . . 5 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → (Hom ‘𝑐) = (Hom ‘(SetCat‘2o)))
26 oveq 7454 . . . . . . . . . . . 12 ( = (Hom ‘(SetCat‘2o)) → (𝑥𝑦) = (𝑥(Hom ‘(SetCat‘2o))𝑦))
27 oveq 7454 . . . . . . . . . . . 12 ( = (Hom ‘(SetCat‘2o)) → (𝑧𝑤) = (𝑧(Hom ‘(SetCat‘2o))𝑤))
2826, 27ineq12d 4242 . . . . . . . . . . 11 ( = (Hom ‘(SetCat‘2o)) → ((𝑥𝑦) ∩ (𝑧𝑤)) = ((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)))
2928neeq1d 3006 . . . . . . . . . 10 ( = (Hom ‘(SetCat‘2o)) → (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ↔ ((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅))
3029anbi1d 630 . . . . . . . . 9 ( = (Hom ‘(SetCat‘2o)) → ((((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
31302rexbidv 3228 . . . . . . . 8 ( = (Hom ‘(SetCat‘2o)) → (∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
32312rexbidv 3228 . . . . . . 7 ( = (Hom ‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
3332adantl 481 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
34 pm4.61 404 . . . . . . . . . . 11 (¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
35342rexbii 3135 . . . . . . . . . 10 (∃𝑧𝑏𝑤𝑏 ¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
36 rexnal2 3141 . . . . . . . . . 10 (∃𝑧𝑏𝑤𝑏 ¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
3735, 36bitr3i 277 . . . . . . . . 9 (∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
38372rexbii 3135 . . . . . . . 8 (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏 ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
39 rexnal2 3141 . . . . . . . 8 (∃𝑥𝑏𝑦𝑏 ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
4038, 39bitri 275 . . . . . . 7 (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
4140a1i 11 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))))
42 rexeq 3330 . . . . . . . . . 10 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
43422rexbidv 3228 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4443rexbidv 3185 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
45 rexeq 3330 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
46452rexbidv 3228 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
47 rexeq 3330 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4847rexeqbi1dv 3347 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4944, 46, 483bitrd 305 . . . . . . 7 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5049ad2antlr 726 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5133, 41, 503bitr3d 309 . . . . 5 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5223, 25, 51sbcied2 3852 . . . 4 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → ([(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5321, 22, 52sbcied2 3852 . . 3 (𝑐 = (SetCat‘2o) → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5453rspcev 3635 . 2 (((SetCat‘2o) ∈ Cat ∧ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))) → ∃𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
554, 20, 54mp2an 691 1 𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  [wsbc 3804  cin 3975  c0 4352  {csn 4648  {cpr 4650  Oncon0 6395  cfv 6573  (class class class)co 7448  2oc2o 8516  Basecbs 17258  Hom chom 17322  Catccat 17722  SetCatcsetc 18142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-setc 18143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator