MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1 Structured version   Visualization version   GIF version

Theorem cat1 17728
Description: The definition of category df-cat 17294 does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. See setc2obas 17725 and setc2ohom 17726 for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa 17657 and its subsection. (Contributed by Zhi Wang, 15-Sep-2024.)
Assertion
Ref Expression
cat1 𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))
Distinct variable group:   𝑏,𝑐,,𝑤,𝑥,𝑦,𝑧

Proof of Theorem cat1
StepHypRef Expression
1 2on 8275 . . 3 2o ∈ On
2 eqid 2738 . . . 4 (SetCat‘2o) = (SetCat‘2o)
32setccat 17716 . . 3 (2o ∈ On → (SetCat‘2o) ∈ Cat)
41, 3ax-mp 5 . 2 (SetCat‘2o) ∈ Cat
51a1i 11 . . . 4 (⊤ → 2o ∈ On)
6 eqid 2738 . . . 4 (Base‘(SetCat‘2o)) = (Base‘(SetCat‘2o))
7 eqid 2738 . . . 4 (Hom ‘(SetCat‘2o)) = (Hom ‘(SetCat‘2o))
8 0ex 5226 . . . . . . 7 ∅ ∈ V
98prid1 4695 . . . . . 6 ∅ ∈ {∅, {∅}}
10 df2o2 8283 . . . . . 6 2o = {∅, {∅}}
119, 10eleqtrri 2838 . . . . 5 ∅ ∈ 2o
1211a1i 11 . . . 4 (⊤ → ∅ ∈ 2o)
13 p0ex 5302 . . . . . . 7 {∅} ∈ V
1413prid2 4696 . . . . . 6 {∅} ∈ {∅, {∅}}
1514, 10eleqtrri 2838 . . . . 5 {∅} ∈ 2o
1615a1i 11 . . . 4 (⊤ → {∅} ∈ 2o)
17 0nep0 5275 . . . . 5 ∅ ≠ {∅}
1817a1i 11 . . . 4 (⊤ → ∅ ≠ {∅})
192, 5, 6, 7, 12, 16, 18cat1lem 17727 . . 3 (⊤ → ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
2019mptru 1546 . 2 𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))
21 fvexd 6771 . . . 4 (𝑐 = (SetCat‘2o) → (Base‘𝑐) ∈ V)
22 fveq2 6756 . . . 4 (𝑐 = (SetCat‘2o) → (Base‘𝑐) = (Base‘(SetCat‘2o)))
23 fvexd 6771 . . . . 5 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → (Hom ‘𝑐) ∈ V)
24 fveq2 6756 . . . . . 6 (𝑐 = (SetCat‘2o) → (Hom ‘𝑐) = (Hom ‘(SetCat‘2o)))
2524adantr 480 . . . . 5 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → (Hom ‘𝑐) = (Hom ‘(SetCat‘2o)))
26 oveq 7261 . . . . . . . . . . . 12 ( = (Hom ‘(SetCat‘2o)) → (𝑥𝑦) = (𝑥(Hom ‘(SetCat‘2o))𝑦))
27 oveq 7261 . . . . . . . . . . . 12 ( = (Hom ‘(SetCat‘2o)) → (𝑧𝑤) = (𝑧(Hom ‘(SetCat‘2o))𝑤))
2826, 27ineq12d 4144 . . . . . . . . . . 11 ( = (Hom ‘(SetCat‘2o)) → ((𝑥𝑦) ∩ (𝑧𝑤)) = ((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)))
2928neeq1d 3002 . . . . . . . . . 10 ( = (Hom ‘(SetCat‘2o)) → (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ↔ ((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅))
3029anbi1d 629 . . . . . . . . 9 ( = (Hom ‘(SetCat‘2o)) → ((((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
31302rexbidv 3228 . . . . . . . 8 ( = (Hom ‘(SetCat‘2o)) → (∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
32312rexbidv 3228 . . . . . . 7 ( = (Hom ‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
3332adantl 481 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
34 pm4.61 404 . . . . . . . . . . 11 (¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
35342rexbii 3178 . . . . . . . . . 10 (∃𝑧𝑏𝑤𝑏 ¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
36 rexnal2 3186 . . . . . . . . . 10 (∃𝑧𝑏𝑤𝑏 ¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
3735, 36bitr3i 276 . . . . . . . . 9 (∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
38372rexbii 3178 . . . . . . . 8 (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏 ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
39 rexnal2 3186 . . . . . . . 8 (∃𝑥𝑏𝑦𝑏 ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
4038, 39bitri 274 . . . . . . 7 (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
4140a1i 11 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))))
42 rexeq 3334 . . . . . . . . . 10 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
43422rexbidv 3228 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4443rexbidv 3225 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
45 rexeq 3334 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
46452rexbidv 3228 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
47 rexeq 3334 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4847rexeqbi1dv 3332 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4944, 46, 483bitrd 304 . . . . . . 7 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5049ad2antlr 723 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5133, 41, 503bitr3d 308 . . . . 5 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5223, 25, 51sbcied2 3758 . . . 4 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → ([(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5321, 22, 52sbcied2 3758 . . 3 (𝑐 = (SetCat‘2o) → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5453rspcev 3552 . 2 (((SetCat‘2o) ∈ Cat ∧ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))) → ∃𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
554, 20, 54mp2an 688 1 𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  [wsbc 3711  cin 3882  c0 4253  {csn 4558  {cpr 4560  Oncon0 6251  cfv 6418  (class class class)co 7255  2oc2o 8261  Basecbs 16840  Hom chom 16899  Catccat 17290  SetCatcsetc 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-setc 17707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator