MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1 Structured version   Visualization version   GIF version

Theorem cat1 18051
Description: The definition of category df-cat 17613 does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. See setc2obas 18048 and setc2ohom 18049 for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa 17980 and its subsection. (Contributed by Zhi Wang, 15-Sep-2024.)
Assertion
Ref Expression
cat1 βˆƒπ‘ ∈ Cat [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))
Distinct variable group:   𝑏,𝑐,β„Ž,𝑀,π‘₯,𝑦,𝑧

Proof of Theorem cat1
StepHypRef Expression
1 2on 8476 . . 3 2o ∈ On
2 eqid 2724 . . . 4 (SetCatβ€˜2o) = (SetCatβ€˜2o)
32setccat 18039 . . 3 (2o ∈ On β†’ (SetCatβ€˜2o) ∈ Cat)
41, 3ax-mp 5 . 2 (SetCatβ€˜2o) ∈ Cat
51a1i 11 . . . 4 (⊀ β†’ 2o ∈ On)
6 eqid 2724 . . . 4 (Baseβ€˜(SetCatβ€˜2o)) = (Baseβ€˜(SetCatβ€˜2o))
7 eqid 2724 . . . 4 (Hom β€˜(SetCatβ€˜2o)) = (Hom β€˜(SetCatβ€˜2o))
8 0ex 5298 . . . . . . 7 βˆ… ∈ V
98prid1 4759 . . . . . 6 βˆ… ∈ {βˆ…, {βˆ…}}
10 df2o2 8471 . . . . . 6 2o = {βˆ…, {βˆ…}}
119, 10eleqtrri 2824 . . . . 5 βˆ… ∈ 2o
1211a1i 11 . . . 4 (⊀ β†’ βˆ… ∈ 2o)
13 p0ex 5373 . . . . . . 7 {βˆ…} ∈ V
1413prid2 4760 . . . . . 6 {βˆ…} ∈ {βˆ…, {βˆ…}}
1514, 10eleqtrri 2824 . . . . 5 {βˆ…} ∈ 2o
1615a1i 11 . . . 4 (⊀ β†’ {βˆ…} ∈ 2o)
17 0nep0 5347 . . . . 5 βˆ… β‰  {βˆ…}
1817a1i 11 . . . 4 (⊀ β†’ βˆ… β‰  {βˆ…})
192, 5, 6, 7, 12, 16, 18cat1lem 18050 . . 3 (⊀ β†’ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
2019mptru 1540 . 2 βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))
21 fvexd 6897 . . . 4 (𝑐 = (SetCatβ€˜2o) β†’ (Baseβ€˜π‘) ∈ V)
22 fveq2 6882 . . . 4 (𝑐 = (SetCatβ€˜2o) β†’ (Baseβ€˜π‘) = (Baseβ€˜(SetCatβ€˜2o)))
23 fvexd 6897 . . . . 5 ((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) β†’ (Hom β€˜π‘) ∈ V)
24 fveq2 6882 . . . . . 6 (𝑐 = (SetCatβ€˜2o) β†’ (Hom β€˜π‘) = (Hom β€˜(SetCatβ€˜2o)))
2524adantr 480 . . . . 5 ((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) β†’ (Hom β€˜π‘) = (Hom β€˜(SetCatβ€˜2o)))
26 oveq 7408 . . . . . . . . . . . 12 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (π‘₯β„Žπ‘¦) = (π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦))
27 oveq 7408 . . . . . . . . . . . 12 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (π‘§β„Žπ‘€) = (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀))
2826, 27ineq12d 4206 . . . . . . . . . . 11 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ ((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) = ((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)))
2928neeq1d 2992 . . . . . . . . . 10 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ↔ ((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ…))
3029anbi1d 629 . . . . . . . . 9 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ ((((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
31302rexbidv 3211 . . . . . . . 8 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
32312rexbidv 3211 . . . . . . 7 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
3332adantl 481 . . . . . 6 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
34 pm4.61 404 . . . . . . . . . . 11 (Β¬ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
35342rexbii 3121 . . . . . . . . . 10 (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 Β¬ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
36 rexnal2 3127 . . . . . . . . . 10 (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 Β¬ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
3735, 36bitr3i 277 . . . . . . . . 9 (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
38372rexbii 3121 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
39 rexnal2 3127 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
4038, 39bitri 275 . . . . . . 7 (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
4140a1i 11 . . . . . 6 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
42 rexeq 3313 . . . . . . . . . 10 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
43422rexbidv 3211 . . . . . . . . 9 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
4443rexbidv 3170 . . . . . . . 8 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
45 rexeq 3313 . . . . . . . . 9 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
46452rexbidv 3211 . . . . . . . 8 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
47 rexeq 3313 . . . . . . . . 9 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
4847rexeqbi1dv 3326 . . . . . . . 8 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
4944, 46, 483bitrd 305 . . . . . . 7 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5049ad2antlr 724 . . . . . 6 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5133, 41, 503bitr3d 309 . . . . 5 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5223, 25, 51sbcied2 3817 . . . 4 ((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) β†’ ([(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5321, 22, 52sbcied2 3817 . . 3 (𝑐 = (SetCatβ€˜2o) β†’ ([(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5453rspcev 3604 . 2 (((SetCatβ€˜2o) ∈ Cat ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))) β†’ βˆƒπ‘ ∈ Cat [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
554, 20, 54mp2an 689 1 βˆƒπ‘ ∈ Cat [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βŠ€wtru 1534   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466  [wsbc 3770   ∩ cin 3940  βˆ…c0 4315  {csn 4621  {cpr 4623  Oncon0 6355  β€˜cfv 6534  (class class class)co 7402  2oc2o 8456  Basecbs 17145  Hom chom 17209  Catccat 17609  SetCatcsetc 18029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-hom 17222  df-cco 17223  df-cat 17613  df-cid 17614  df-setc 18030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator