MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1 Structured version   Visualization version   GIF version

Theorem cat1 17983
Description: The definition of category df-cat 17548 does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. See setc2obas 17980 and setc2ohom 17981 for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa 17912 and its subsection. (Contributed by Zhi Wang, 15-Sep-2024.)
Assertion
Ref Expression
cat1 𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))
Distinct variable group:   𝑏,𝑐,,𝑤,𝑥,𝑦,𝑧

Proof of Theorem cat1
StepHypRef Expression
1 2on 8426 . . 3 2o ∈ On
2 eqid 2736 . . . 4 (SetCat‘2o) = (SetCat‘2o)
32setccat 17971 . . 3 (2o ∈ On → (SetCat‘2o) ∈ Cat)
41, 3ax-mp 5 . 2 (SetCat‘2o) ∈ Cat
51a1i 11 . . . 4 (⊤ → 2o ∈ On)
6 eqid 2736 . . . 4 (Base‘(SetCat‘2o)) = (Base‘(SetCat‘2o))
7 eqid 2736 . . . 4 (Hom ‘(SetCat‘2o)) = (Hom ‘(SetCat‘2o))
8 0ex 5264 . . . . . . 7 ∅ ∈ V
98prid1 4723 . . . . . 6 ∅ ∈ {∅, {∅}}
10 df2o2 8421 . . . . . 6 2o = {∅, {∅}}
119, 10eleqtrri 2837 . . . . 5 ∅ ∈ 2o
1211a1i 11 . . . 4 (⊤ → ∅ ∈ 2o)
13 p0ex 5339 . . . . . . 7 {∅} ∈ V
1413prid2 4724 . . . . . 6 {∅} ∈ {∅, {∅}}
1514, 10eleqtrri 2837 . . . . 5 {∅} ∈ 2o
1615a1i 11 . . . 4 (⊤ → {∅} ∈ 2o)
17 0nep0 5313 . . . . 5 ∅ ≠ {∅}
1817a1i 11 . . . 4 (⊤ → ∅ ≠ {∅})
192, 5, 6, 7, 12, 16, 18cat1lem 17982 . . 3 (⊤ → ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
2019mptru 1548 . 2 𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))
21 fvexd 6857 . . . 4 (𝑐 = (SetCat‘2o) → (Base‘𝑐) ∈ V)
22 fveq2 6842 . . . 4 (𝑐 = (SetCat‘2o) → (Base‘𝑐) = (Base‘(SetCat‘2o)))
23 fvexd 6857 . . . . 5 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → (Hom ‘𝑐) ∈ V)
24 fveq2 6842 . . . . . 6 (𝑐 = (SetCat‘2o) → (Hom ‘𝑐) = (Hom ‘(SetCat‘2o)))
2524adantr 481 . . . . 5 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → (Hom ‘𝑐) = (Hom ‘(SetCat‘2o)))
26 oveq 7363 . . . . . . . . . . . 12 ( = (Hom ‘(SetCat‘2o)) → (𝑥𝑦) = (𝑥(Hom ‘(SetCat‘2o))𝑦))
27 oveq 7363 . . . . . . . . . . . 12 ( = (Hom ‘(SetCat‘2o)) → (𝑧𝑤) = (𝑧(Hom ‘(SetCat‘2o))𝑤))
2826, 27ineq12d 4173 . . . . . . . . . . 11 ( = (Hom ‘(SetCat‘2o)) → ((𝑥𝑦) ∩ (𝑧𝑤)) = ((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)))
2928neeq1d 3003 . . . . . . . . . 10 ( = (Hom ‘(SetCat‘2o)) → (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ↔ ((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅))
3029anbi1d 630 . . . . . . . . 9 ( = (Hom ‘(SetCat‘2o)) → ((((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
31302rexbidv 3213 . . . . . . . 8 ( = (Hom ‘(SetCat‘2o)) → (∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
32312rexbidv 3213 . . . . . . 7 ( = (Hom ‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
3332adantl 482 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
34 pm4.61 405 . . . . . . . . . . 11 (¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
35342rexbii 3128 . . . . . . . . . 10 (∃𝑧𝑏𝑤𝑏 ¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)))
36 rexnal2 3132 . . . . . . . . . 10 (∃𝑧𝑏𝑤𝑏 ¬ (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
3735, 36bitr3i 276 . . . . . . . . 9 (∃𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
38372rexbii 3128 . . . . . . . 8 (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏 ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
39 rexnal2 3132 . . . . . . . 8 (∃𝑥𝑏𝑦𝑏 ¬ ∀𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
4038, 39bitri 274 . . . . . . 7 (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
4140a1i 11 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))))
42 rexeq 3310 . . . . . . . . . 10 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
43422rexbidv 3213 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4443rexbidv 3175 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
45 rexeq 3310 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
46452rexbidv 3213 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥𝑏𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
47 rexeq 3310 . . . . . . . . 9 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4847rexeqbi1dv 3308 . . . . . . . 8 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
4944, 46, 483bitrd 304 . . . . . . 7 (𝑏 = (Base‘(SetCat‘2o)) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5049ad2antlr 725 . . . . . 6 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (∃𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5133, 41, 503bitr3d 308 . . . . 5 (((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) ∧ = (Hom ‘(SetCat‘2o))) → (¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5223, 25, 51sbcied2 3786 . . . 4 ((𝑐 = (SetCat‘2o) ∧ 𝑏 = (Base‘(SetCat‘2o))) → ([(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5321, 22, 52sbcied2 3786 . . 3 (𝑐 = (SetCat‘2o) → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))))
5453rspcev 3581 . 2 (((SetCat‘2o) ∈ Cat ∧ ∃𝑥 ∈ (Base‘(SetCat‘2o))∃𝑦 ∈ (Base‘(SetCat‘2o))∃𝑧 ∈ (Base‘(SetCat‘2o))∃𝑤 ∈ (Base‘(SetCat‘2o))(((𝑥(Hom ‘(SetCat‘2o))𝑦) ∩ (𝑧(Hom ‘(SetCat‘2o))𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧𝑦 = 𝑤))) → ∃𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤)))
554, 20, 54mp2an 690 1 𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ] ¬ ∀𝑥𝑏𝑦𝑏𝑧𝑏𝑤𝑏 (((𝑥𝑦) ∩ (𝑧𝑤)) ≠ ∅ → (𝑥 = 𝑧𝑦 = 𝑤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  [wsbc 3739  cin 3909  c0 4282  {csn 4586  {cpr 4588  Oncon0 6317  cfv 6496  (class class class)co 7357  2oc2o 8406  Basecbs 17083  Hom chom 17144  Catccat 17544  SetCatcsetc 17961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-hom 17157  df-cco 17158  df-cat 17548  df-cid 17549  df-setc 17962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator