MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cat1 Structured version   Visualization version   GIF version

Theorem cat1 18046
Description: The definition of category df-cat 17611 does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. See setc2obas 18043 and setc2ohom 18044 for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa 17975 and its subsection. (Contributed by Zhi Wang, 15-Sep-2024.)
Assertion
Ref Expression
cat1 βˆƒπ‘ ∈ Cat [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))
Distinct variable group:   𝑏,𝑐,β„Ž,𝑀,π‘₯,𝑦,𝑧

Proof of Theorem cat1
StepHypRef Expression
1 2on 8479 . . 3 2o ∈ On
2 eqid 2732 . . . 4 (SetCatβ€˜2o) = (SetCatβ€˜2o)
32setccat 18034 . . 3 (2o ∈ On β†’ (SetCatβ€˜2o) ∈ Cat)
41, 3ax-mp 5 . 2 (SetCatβ€˜2o) ∈ Cat
51a1i 11 . . . 4 (⊀ β†’ 2o ∈ On)
6 eqid 2732 . . . 4 (Baseβ€˜(SetCatβ€˜2o)) = (Baseβ€˜(SetCatβ€˜2o))
7 eqid 2732 . . . 4 (Hom β€˜(SetCatβ€˜2o)) = (Hom β€˜(SetCatβ€˜2o))
8 0ex 5307 . . . . . . 7 βˆ… ∈ V
98prid1 4766 . . . . . 6 βˆ… ∈ {βˆ…, {βˆ…}}
10 df2o2 8474 . . . . . 6 2o = {βˆ…, {βˆ…}}
119, 10eleqtrri 2832 . . . . 5 βˆ… ∈ 2o
1211a1i 11 . . . 4 (⊀ β†’ βˆ… ∈ 2o)
13 p0ex 5382 . . . . . . 7 {βˆ…} ∈ V
1413prid2 4767 . . . . . 6 {βˆ…} ∈ {βˆ…, {βˆ…}}
1514, 10eleqtrri 2832 . . . . 5 {βˆ…} ∈ 2o
1615a1i 11 . . . 4 (⊀ β†’ {βˆ…} ∈ 2o)
17 0nep0 5356 . . . . 5 βˆ… β‰  {βˆ…}
1817a1i 11 . . . 4 (⊀ β†’ βˆ… β‰  {βˆ…})
192, 5, 6, 7, 12, 16, 18cat1lem 18045 . . 3 (⊀ β†’ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
2019mptru 1548 . 2 βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))
21 fvexd 6906 . . . 4 (𝑐 = (SetCatβ€˜2o) β†’ (Baseβ€˜π‘) ∈ V)
22 fveq2 6891 . . . 4 (𝑐 = (SetCatβ€˜2o) β†’ (Baseβ€˜π‘) = (Baseβ€˜(SetCatβ€˜2o)))
23 fvexd 6906 . . . . 5 ((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) β†’ (Hom β€˜π‘) ∈ V)
24 fveq2 6891 . . . . . 6 (𝑐 = (SetCatβ€˜2o) β†’ (Hom β€˜π‘) = (Hom β€˜(SetCatβ€˜2o)))
2524adantr 481 . . . . 5 ((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) β†’ (Hom β€˜π‘) = (Hom β€˜(SetCatβ€˜2o)))
26 oveq 7414 . . . . . . . . . . . 12 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (π‘₯β„Žπ‘¦) = (π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦))
27 oveq 7414 . . . . . . . . . . . 12 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (π‘§β„Žπ‘€) = (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀))
2826, 27ineq12d 4213 . . . . . . . . . . 11 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ ((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) = ((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)))
2928neeq1d 3000 . . . . . . . . . 10 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ↔ ((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ…))
3029anbi1d 630 . . . . . . . . 9 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ ((((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
31302rexbidv 3219 . . . . . . . 8 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
32312rexbidv 3219 . . . . . . 7 (β„Ž = (Hom β€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
3332adantl 482 . . . . . 6 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
34 pm4.61 405 . . . . . . . . . . 11 (Β¬ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
35342rexbii 3129 . . . . . . . . . 10 (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 Β¬ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
36 rexnal2 3135 . . . . . . . . . 10 (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 Β¬ (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
3735, 36bitr3i 276 . . . . . . . . 9 (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
38372rexbii 3129 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
39 rexnal2 3135 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 Β¬ βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
4038, 39bitri 274 . . . . . . 7 (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
4140a1i 11 . . . . . 6 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
42 rexeq 3321 . . . . . . . . . 10 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
43422rexbidv 3219 . . . . . . . . 9 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
4443rexbidv 3178 . . . . . . . 8 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
45 rexeq 3321 . . . . . . . . 9 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
46452rexbidv 3219 . . . . . . . 8 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
47 rexeq 3321 . . . . . . . . 9 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
4847rexeqbi1dv 3334 . . . . . . . 8 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
4944, 46, 483bitrd 304 . . . . . . 7 (𝑏 = (Baseβ€˜(SetCatβ€˜2o)) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5049ad2antlr 725 . . . . . 6 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (βˆƒπ‘₯ ∈ 𝑏 βˆƒπ‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 βˆƒπ‘€ ∈ 𝑏 (((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5133, 41, 503bitr3d 308 . . . . 5 (((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) ∧ β„Ž = (Hom β€˜(SetCatβ€˜2o))) β†’ (Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5223, 25, 51sbcied2 3824 . . . 4 ((𝑐 = (SetCatβ€˜2o) ∧ 𝑏 = (Baseβ€˜(SetCatβ€˜2o))) β†’ ([(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5321, 22, 52sbcied2 3824 . . 3 (𝑐 = (SetCatβ€˜2o) β†’ ([(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))))
5453rspcev 3612 . 2 (((SetCatβ€˜2o) ∈ Cat ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘¦ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘§ ∈ (Baseβ€˜(SetCatβ€˜2o))βˆƒπ‘€ ∈ (Baseβ€˜(SetCatβ€˜2o))(((π‘₯(Hom β€˜(SetCatβ€˜2o))𝑦) ∩ (𝑧(Hom β€˜(SetCatβ€˜2o))𝑀)) β‰  βˆ… ∧ Β¬ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))) β†’ βˆƒπ‘ ∈ Cat [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀)))
554, 20, 54mp2an 690 1 βˆƒπ‘ ∈ Cat [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž] Β¬ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘€ ∈ 𝑏 (((π‘₯β„Žπ‘¦) ∩ (π‘§β„Žπ‘€)) β‰  βˆ… β†’ (π‘₯ = 𝑧 ∧ 𝑦 = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βŠ€wtru 1542   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474  [wsbc 3777   ∩ cin 3947  βˆ…c0 4322  {csn 4628  {cpr 4630  Oncon0 6364  β€˜cfv 6543  (class class class)co 7408  2oc2o 8459  Basecbs 17143  Hom chom 17207  Catccat 17607  SetCatcsetc 18024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-hom 17220  df-cco 17221  df-cat 17611  df-cid 17612  df-setc 18025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator