| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sh0le | Structured version Visualization version GIF version | ||
| Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sh0le | ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31216 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | sh0 31179 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 3 | 2 | snssd 4763 | . 2 ⊢ (𝐴 ∈ Sℋ → {0ℎ} ⊆ 𝐴) |
| 4 | 1, 3 | eqsstrid 3976 | 1 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 0ℎc0v 30887 Sℋ csh 30891 0ℋc0h 30898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-hilex 30962 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-sh 31170 df-ch0 31216 |
| This theorem is referenced by: ch0le 31404 shle0 31405 orthin 31409 ssjo 31410 shs0i 31412 span0 31505 |
| Copyright terms: Public domain | W3C validator |