|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > sh0le | Structured version Visualization version GIF version | ||
| Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sh0le | ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ch0 31272 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | sh0 31235 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 3 | 2 | snssd 4809 | . 2 ⊢ (𝐴 ∈ Sℋ → {0ℎ} ⊆ 𝐴) | 
| 4 | 1, 3 | eqsstrid 4022 | 1 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3951 {csn 4626 0ℎc0v 30943 Sℋ csh 30947 0ℋc0h 30954 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-hilex 31018 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-sh 31226 df-ch0 31272 | 
| This theorem is referenced by: ch0le 31460 shle0 31461 orthin 31465 ssjo 31466 shs0i 31468 span0 31561 | 
| Copyright terms: Public domain | W3C validator |