HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sh0le Structured version   Visualization version   GIF version

Theorem sh0le 31403
Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
sh0le (𝐴S → 0𝐴)

Proof of Theorem sh0le
StepHypRef Expression
1 df-ch0 31216 . 2 0 = {0}
2 sh0 31179 . . 3 (𝐴S → 0𝐴)
32snssd 4763 . 2 (𝐴S → {0} ⊆ 𝐴)
41, 3eqsstrid 3976 1 (𝐴S → 0𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  {csn 4579  0c0v 30887   S csh 30891  0c0h 30898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-hilex 30962
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-sh 31170  df-ch0 31216
This theorem is referenced by:  ch0le  31404  shle0  31405  orthin  31409  ssjo  31410  shs0i  31412  span0  31505
  Copyright terms: Public domain W3C validator