HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sh0le Structured version   Visualization version   GIF version

Theorem sh0le 31342
Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
sh0le (𝐴S → 0𝐴)

Proof of Theorem sh0le
StepHypRef Expression
1 df-ch0 31155 . 2 0 = {0}
2 sh0 31118 . . 3 (𝐴S → 0𝐴)
32snssd 4769 . 2 (𝐴S → {0} ⊆ 𝐴)
41, 3eqsstrid 3982 1 (𝐴S → 0𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3911  {csn 4585  0c0v 30826   S csh 30830  0c0h 30837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-sh 31109  df-ch0 31155
This theorem is referenced by:  ch0le  31343  shle0  31344  orthin  31348  ssjo  31349  shs0i  31351  span0  31444
  Copyright terms: Public domain W3C validator