Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > sh0le | Structured version Visualization version GIF version |
Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sh0le | ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 29516 | . 2 ⊢ 0ℋ = {0ℎ} | |
2 | sh0 29479 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
3 | 2 | snssd 4739 | . 2 ⊢ (𝐴 ∈ Sℋ → {0ℎ} ⊆ 𝐴) |
4 | 1, 3 | eqsstrid 3965 | 1 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 0ℎc0v 29187 Sℋ csh 29191 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-sh 29470 df-ch0 29516 |
This theorem is referenced by: ch0le 29704 shle0 29705 orthin 29709 ssjo 29710 shs0i 29712 span0 29805 |
Copyright terms: Public domain | W3C validator |