![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sh0le | Structured version Visualization version GIF version |
Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sh0le | ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 31285 | . 2 ⊢ 0ℋ = {0ℎ} | |
2 | sh0 31248 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
3 | 2 | snssd 4834 | . 2 ⊢ (𝐴 ∈ Sℋ → {0ℎ} ⊆ 𝐴) |
4 | 1, 3 | eqsstrid 4057 | 1 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 0ℎc0v 30956 Sℋ csh 30960 0ℋc0h 30967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sh 31239 df-ch0 31285 |
This theorem is referenced by: ch0le 31473 shle0 31474 orthin 31478 ssjo 31479 shs0i 31481 span0 31574 |
Copyright terms: Public domain | W3C validator |