| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sh0le | Structured version Visualization version GIF version | ||
| Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sh0le | ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31239 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | sh0 31202 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 3 | 2 | snssd 4790 | . 2 ⊢ (𝐴 ∈ Sℋ → {0ℎ} ⊆ 𝐴) |
| 4 | 1, 3 | eqsstrid 4002 | 1 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 0ℎc0v 30910 Sℋ csh 30914 0ℋc0h 30921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-sh 31193 df-ch0 31239 |
| This theorem is referenced by: ch0le 31427 shle0 31428 orthin 31432 ssjo 31433 shs0i 31435 span0 31528 |
| Copyright terms: Public domain | W3C validator |