| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sh0le | Structured version Visualization version GIF version | ||
| Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sh0le | ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31225 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | sh0 31188 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
| 3 | 2 | snssd 4756 | . 2 ⊢ (𝐴 ∈ Sℋ → {0ℎ} ⊆ 𝐴) |
| 4 | 1, 3 | eqsstrid 3968 | 1 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 {csn 4571 0ℎc0v 30896 Sℋ csh 30900 0ℋc0h 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-hilex 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-sh 31179 df-ch0 31225 |
| This theorem is referenced by: ch0le 31413 shle0 31414 orthin 31418 ssjo 31419 shs0i 31421 span0 31514 |
| Copyright terms: Public domain | W3C validator |