Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version |
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 29611 | . . 3 ⊢ 0ℋ = {0ℎ} | |
2 | 1 | eleq2i 2832 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
3 | ax-hv0cl 29361 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
4 | 3 | elexi 3450 | . . 3 ⊢ 0ℎ ∈ V |
5 | 4 | elsn2 4606 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2110 {csn 4567 ℋchba 29277 0ℎc0v 29282 0ℋc0h 29293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-hv0cl 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-sn 4568 df-ch0 29611 |
This theorem is referenced by: ocin 29654 ocnel 29656 shuni 29658 choc0 29684 choc1 29685 omlsilem 29760 pjoc1i 29789 shne0i 29806 h1dn0 29910 spansnm0i 30008 nonbooli 30009 eleigvec 30315 cdjreui 30790 cdj3lem1 30792 |
Copyright terms: Public domain | W3C validator |