HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 31236
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 31235 . . 3 0 = {0}
21eleq2i 2825 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 30985 . . . 4 0 ∈ ℋ
43elexi 3460 . . 3 0 ∈ V
54elsn2 4617 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 275 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  {csn 4575  chba 30901  0c0v 30906  0c0h 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-hv0cl 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-sn 4576  df-ch0 31235
This theorem is referenced by:  ocin  31278  ocnel  31280  shuni  31282  choc0  31308  choc1  31309  omlsilem  31384  pjoc1i  31413  shne0i  31430  h1dn0  31534  spansnm0i  31632  nonbooli  31633  eleigvec  31939  cdjreui  32414  cdj3lem1  32416
  Copyright terms: Public domain W3C validator