HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 30507
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 30506 . . 3 0 = {0}
21eleq2i 2826 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 30256 . . . 4 0 ∈ ℋ
43elexi 3494 . . 3 0 ∈ V
54elsn2 4668 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 275 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  {csn 4629  chba 30172  0c0v 30177  0c0h 30188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-hv0cl 30256
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-sn 4630  df-ch0 30506
This theorem is referenced by:  ocin  30549  ocnel  30551  shuni  30553  choc0  30579  choc1  30580  omlsilem  30655  pjoc1i  30684  shne0i  30701  h1dn0  30805  spansnm0i  30903  nonbooli  30904  eleigvec  31210  cdjreui  31685  cdj3lem1  31687
  Copyright terms: Public domain W3C validator