HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 31283
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 31282 . . 3 0 = {0}
21eleq2i 2831 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 31032 . . . 4 0 ∈ ℋ
43elexi 3501 . . 3 0 ∈ V
54elsn2 4670 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 275 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2106  {csn 4631  chba 30948  0c0v 30953  0c0h 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-hv0cl 31032
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-sn 4632  df-ch0 31282
This theorem is referenced by:  ocin  31325  ocnel  31327  shuni  31329  choc0  31355  choc1  31356  omlsilem  31431  pjoc1i  31460  shne0i  31477  h1dn0  31581  spansnm0i  31679  nonbooli  31680  eleigvec  31986  cdjreui  32461  cdj3lem1  32463
  Copyright terms: Public domain W3C validator