HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 29616
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 29615 . . 3 0 = {0}
21eleq2i 2830 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 29365 . . . 4 0 ∈ ℋ
43elexi 3451 . . 3 0 ∈ V
54elsn2 4600 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 274 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  {csn 4561  chba 29281  0c0v 29286  0c0h 29297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-hv0cl 29365
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-sn 4562  df-ch0 29615
This theorem is referenced by:  ocin  29658  ocnel  29660  shuni  29662  choc0  29688  choc1  29689  omlsilem  29764  pjoc1i  29793  shne0i  29810  h1dn0  29914  spansnm0i  30012  nonbooli  30013  eleigvec  30319  cdjreui  30794  cdj3lem1  30796
  Copyright terms: Public domain W3C validator