HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 31235
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 31234 . . 3 0 = {0}
21eleq2i 2826 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 30984 . . . 4 0 ∈ ℋ
43elexi 3482 . . 3 0 ∈ V
54elsn2 4641 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 275 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  {csn 4601  chba 30900  0c0v 30905  0c0h 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-hv0cl 30984
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-sn 4602  df-ch0 31234
This theorem is referenced by:  ocin  31277  ocnel  31279  shuni  31281  choc0  31307  choc1  31308  omlsilem  31383  pjoc1i  31412  shne0i  31429  h1dn0  31533  spansnm0i  31631  nonbooli  31632  eleigvec  31938  cdjreui  32413  cdj3lem1  32415
  Copyright terms: Public domain W3C validator