| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version | ||
| Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31189 | . . 3 ⊢ 0ℋ = {0ℎ} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
| 3 | ax-hv0cl 30939 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 4 | 3 | elexi 3473 | . . 3 ⊢ 0ℎ ∈ V |
| 5 | 4 | elsn2 4632 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 ℋchba 30855 0ℎc0v 30860 0ℋc0h 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-hv0cl 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sn 4593 df-ch0 31189 |
| This theorem is referenced by: ocin 31232 ocnel 31234 shuni 31236 choc0 31262 choc1 31263 omlsilem 31338 pjoc1i 31367 shne0i 31384 h1dn0 31488 spansnm0i 31586 nonbooli 31587 eleigvec 31893 cdjreui 32368 cdj3lem1 32370 |
| Copyright terms: Public domain | W3C validator |