HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 29517
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 29516 . . 3 0 = {0}
21eleq2i 2830 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 29266 . . . 4 0 ∈ ℋ
43elexi 3441 . . 3 0 ∈ V
54elsn2 4597 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 274 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {csn 4558  chba 29182  0c0v 29187  0c0h 29198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-hv0cl 29266
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sn 4559  df-ch0 29516
This theorem is referenced by:  ocin  29559  ocnel  29561  shuni  29563  choc0  29589  choc1  29590  omlsilem  29665  pjoc1i  29694  shne0i  29711  h1dn0  29815  spansnm0i  29913  nonbooli  29914  eleigvec  30220  cdjreui  30695  cdj3lem1  30697
  Copyright terms: Public domain W3C validator