![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version |
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 31282 | . . 3 ⊢ 0ℋ = {0ℎ} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
3 | ax-hv0cl 31032 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
4 | 3 | elexi 3501 | . . 3 ⊢ 0ℎ ∈ V |
5 | 4 | elsn2 4670 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 {csn 4631 ℋchba 30948 0ℎc0v 30953 0ℋc0h 30964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-hv0cl 31032 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-sn 4632 df-ch0 31282 |
This theorem is referenced by: ocin 31325 ocnel 31327 shuni 31329 choc0 31355 choc1 31356 omlsilem 31431 pjoc1i 31460 shne0i 31477 h1dn0 31581 spansnm0i 31679 nonbooli 31680 eleigvec 31986 cdjreui 32461 cdj3lem1 32463 |
Copyright terms: Public domain | W3C validator |