Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version |
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 29615 | . . 3 ⊢ 0ℋ = {0ℎ} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
3 | ax-hv0cl 29365 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
4 | 3 | elexi 3451 | . . 3 ⊢ 0ℎ ∈ V |
5 | 4 | elsn2 4600 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 {csn 4561 ℋchba 29281 0ℎc0v 29286 0ℋc0h 29297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-hv0cl 29365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sn 4562 df-ch0 29615 |
This theorem is referenced by: ocin 29658 ocnel 29660 shuni 29662 choc0 29688 choc1 29689 omlsilem 29764 pjoc1i 29793 shne0i 29810 h1dn0 29914 spansnm0i 30012 nonbooli 30013 eleigvec 30319 cdjreui 30794 cdj3lem1 30796 |
Copyright terms: Public domain | W3C validator |