HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 31190
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 31189 . . 3 0 = {0}
21eleq2i 2821 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 30939 . . . 4 0 ∈ ℋ
43elexi 3473 . . 3 0 ∈ V
54elsn2 4632 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 275 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {csn 4592  chba 30855  0c0v 30860  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-hv0cl 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sn 4593  df-ch0 31189
This theorem is referenced by:  ocin  31232  ocnel  31234  shuni  31236  choc0  31262  choc1  31263  omlsilem  31338  pjoc1i  31367  shne0i  31384  h1dn0  31488  spansnm0i  31586  nonbooli  31587  eleigvec  31893  cdjreui  32368  cdj3lem1  32370
  Copyright terms: Public domain W3C validator