Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version |
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 29516 | . . 3 ⊢ 0ℋ = {0ℎ} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
3 | ax-hv0cl 29266 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
4 | 3 | elexi 3441 | . . 3 ⊢ 0ℎ ∈ V |
5 | 4 | elsn2 4597 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 ℋchba 29182 0ℎc0v 29187 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-hv0cl 29266 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sn 4559 df-ch0 29516 |
This theorem is referenced by: ocin 29559 ocnel 29561 shuni 29563 choc0 29589 choc1 29590 omlsilem 29665 pjoc1i 29694 shne0i 29711 h1dn0 29815 spansnm0i 29913 nonbooli 29914 eleigvec 30220 cdjreui 30695 cdj3lem1 30697 |
Copyright terms: Public domain | W3C validator |