HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 29612
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 29611 . . 3 0 = {0}
21eleq2i 2832 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 29361 . . . 4 0 ∈ ℋ
43elexi 3450 . . 3 0 ∈ V
54elsn2 4606 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 274 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2110  {csn 4567  chba 29277  0c0v 29282  0c0h 29293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-hv0cl 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-sn 4568  df-ch0 29611
This theorem is referenced by:  ocin  29654  ocnel  29656  shuni  29658  choc0  29684  choc1  29685  omlsilem  29760  pjoc1i  29789  shne0i  29806  h1dn0  29910  spansnm0i  30008  nonbooli  30009  eleigvec  30315  cdjreui  30790  cdj3lem1  30792
  Copyright terms: Public domain W3C validator