| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version | ||
| Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31231 | . . 3 ⊢ 0ℋ = {0ℎ} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
| 3 | ax-hv0cl 30981 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 4 | 3 | elexi 3459 | . . 3 ⊢ 0ℎ ∈ V |
| 5 | 4 | elsn2 4618 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {csn 4576 ℋchba 30897 0ℎc0v 30902 0ℋc0h 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-hv0cl 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4577 df-ch0 31231 |
| This theorem is referenced by: ocin 31274 ocnel 31276 shuni 31278 choc0 31304 choc1 31305 omlsilem 31380 pjoc1i 31409 shne0i 31426 h1dn0 31530 spansnm0i 31628 nonbooli 31629 eleigvec 31935 cdjreui 32410 cdj3lem1 32412 |
| Copyright terms: Public domain | W3C validator |