| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h0elch | Structured version Visualization version GIF version | ||
| Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h0elch | ⊢ 0ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31239 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | hsn0elch 31234 | . 2 ⊢ {0ℎ} ∈ Cℋ | |
| 3 | 1, 2 | eqeltri 2831 | 1 ⊢ 0ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4606 0ℎc0v 30910 Cℋ cch 30915 0ℋc0h 30921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-bases 22889 df-lm 23172 df-haus 23258 df-grpo 30479 df-gid 30480 df-ginv 30481 df-gdiv 30482 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-vs 30585 df-nmcv 30586 df-ims 30587 df-hnorm 30954 df-hvsub 30957 df-hlim 30958 df-sh 31193 df-ch 31207 df-ch0 31239 |
| This theorem is referenced by: h0elsh 31242 chintcl 31318 omlsi 31390 pjoml 31422 pjoc2 31425 chj0i 31441 chj00i 31473 chm0 31477 chne0 31480 chocin 31481 chj0 31483 chlejb1 31498 chnle 31500 ledi 31526 chsup0 31534 h1datom 31568 cmbr3 31594 cm0 31595 pjoml2 31597 cmcm 31600 cmcm3 31601 lecm 31603 qlaxr3i 31622 nonbooli 31637 pjige0 31677 pjhfo 31692 pj11 31700 ho0f 31737 pjhmop 32136 pjidmco 32167 hst0 32219 largei 32253 mdslmd1lem3 32313 mdslmd1lem4 32314 csmdsymi 32320 elat2 32326 atcveq0 32334 hatomic 32346 atcv0eq 32365 atoml2i 32369 atordi 32370 atord 32374 atcvat2 32375 chirred 32381 |
| Copyright terms: Public domain | W3C validator |