| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h0elch | Structured version Visualization version GIF version | ||
| Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h0elch | ⊢ 0ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31244 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | hsn0elch 31239 | . 2 ⊢ {0ℎ} ∈ Cℋ | |
| 3 | 1, 2 | eqeltri 2829 | 1 ⊢ 0ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 {csn 4577 0ℎc0v 30915 Cℋ cch 30920 0ℋc0h 30926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 ax-hilex 30990 ax-hfvadd 30991 ax-hvcom 30992 ax-hvass 30993 ax-hv0cl 30994 ax-hvaddid 30995 ax-hfvmul 30996 ax-hvmulid 30997 ax-hvmulass 30998 ax-hvdistr1 30999 ax-hvdistr2 31000 ax-hvmul0 31001 ax-hfi 31070 ax-his1 31073 ax-his2 31074 ax-his3 31075 ax-his4 31076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-n0 12392 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-icc 13262 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-topgen 17357 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-top 22819 df-topon 22836 df-bases 22871 df-lm 23154 df-haus 23240 df-grpo 30484 df-gid 30485 df-ginv 30486 df-gdiv 30487 df-ablo 30536 df-vc 30550 df-nv 30583 df-va 30586 df-ba 30587 df-sm 30588 df-0v 30589 df-vs 30590 df-nmcv 30591 df-ims 30592 df-hnorm 30959 df-hvsub 30962 df-hlim 30963 df-sh 31198 df-ch 31212 df-ch0 31244 |
| This theorem is referenced by: h0elsh 31247 chintcl 31323 omlsi 31395 pjoml 31427 pjoc2 31430 chj0i 31446 chj00i 31478 chm0 31482 chne0 31485 chocin 31486 chj0 31488 chlejb1 31503 chnle 31505 ledi 31531 chsup0 31539 h1datom 31573 cmbr3 31599 cm0 31600 pjoml2 31602 cmcm 31605 cmcm3 31606 lecm 31608 qlaxr3i 31627 nonbooli 31642 pjige0 31682 pjhfo 31697 pj11 31705 ho0f 31742 pjhmop 32141 pjidmco 32172 hst0 32224 largei 32258 mdslmd1lem3 32318 mdslmd1lem4 32319 csmdsymi 32325 elat2 32331 atcveq0 32339 hatomic 32351 atcv0eq 32370 atoml2i 32374 atordi 32375 atord 32379 atcvat2 32380 chirred 32386 |
| Copyright terms: Public domain | W3C validator |