| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h0elch | Structured version Visualization version GIF version | ||
| Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h0elch | ⊢ 0ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 31223 | . 2 ⊢ 0ℋ = {0ℎ} | |
| 2 | hsn0elch 31218 | . 2 ⊢ {0ℎ} ∈ Cℋ | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ 0ℋ ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 {csn 4574 0ℎc0v 30894 Cℋ cch 30899 0ℋc0h 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 ax-hilex 30969 ax-hfvadd 30970 ax-hvcom 30971 ax-hvass 30972 ax-hv0cl 30973 ax-hvaddid 30974 ax-hfvmul 30975 ax-hvmulid 30976 ax-hvmulass 30977 ax-hvdistr1 30978 ax-hvdistr2 30979 ax-hvmul0 30980 ax-hfi 31049 ax-his1 31052 ax-his2 31053 ax-his3 31054 ax-his4 31055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-icc 13244 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-topgen 17339 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-top 22802 df-topon 22819 df-bases 22854 df-lm 23137 df-haus 23223 df-grpo 30463 df-gid 30464 df-ginv 30465 df-gdiv 30466 df-ablo 30515 df-vc 30529 df-nv 30562 df-va 30565 df-ba 30566 df-sm 30567 df-0v 30568 df-vs 30569 df-nmcv 30570 df-ims 30571 df-hnorm 30938 df-hvsub 30941 df-hlim 30942 df-sh 31177 df-ch 31191 df-ch0 31223 |
| This theorem is referenced by: h0elsh 31226 chintcl 31302 omlsi 31374 pjoml 31406 pjoc2 31409 chj0i 31425 chj00i 31457 chm0 31461 chne0 31464 chocin 31465 chj0 31467 chlejb1 31482 chnle 31484 ledi 31510 chsup0 31518 h1datom 31552 cmbr3 31578 cm0 31579 pjoml2 31581 cmcm 31584 cmcm3 31585 lecm 31587 qlaxr3i 31606 nonbooli 31621 pjige0 31661 pjhfo 31676 pj11 31684 ho0f 31721 pjhmop 32120 pjidmco 32151 hst0 32203 largei 32237 mdslmd1lem3 32297 mdslmd1lem4 32298 csmdsymi 32304 elat2 32310 atcveq0 32318 hatomic 32330 atcv0eq 32349 atoml2i 32353 atordi 32354 atord 32358 atcvat2 32359 chirred 32365 |
| Copyright terms: Public domain | W3C validator |