Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h0elch | Structured version Visualization version GIF version |
Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h0elch | ⊢ 0ℋ ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 29148 | . 2 ⊢ 0ℋ = {0ℎ} | |
2 | hsn0elch 29143 | . 2 ⊢ {0ℎ} ∈ Cℋ | |
3 | 1, 2 | eqeltri 2848 | 1 ⊢ 0ℋ ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 {csn 4525 0ℎc0v 28819 Cℋ cch 28824 0ℋc0h 28830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 ax-hilex 28894 ax-hfvadd 28895 ax-hvcom 28896 ax-hvass 28897 ax-hv0cl 28898 ax-hvaddid 28899 ax-hfvmul 28900 ax-hvmulid 28901 ax-hvmulass 28902 ax-hvdistr1 28903 ax-hvdistr2 28904 ax-hvmul0 28905 ax-hfi 28974 ax-his1 28977 ax-his2 28978 ax-his3 28979 ax-his4 28980 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-n0 11948 df-z 12034 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-icc 12799 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-topgen 16788 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-top 21607 df-topon 21624 df-bases 21659 df-lm 21942 df-haus 22028 df-grpo 28388 df-gid 28389 df-ginv 28390 df-gdiv 28391 df-ablo 28440 df-vc 28454 df-nv 28487 df-va 28490 df-ba 28491 df-sm 28492 df-0v 28493 df-vs 28494 df-nmcv 28495 df-ims 28496 df-hnorm 28863 df-hvsub 28866 df-hlim 28867 df-sh 29102 df-ch 29116 df-ch0 29148 |
This theorem is referenced by: h0elsh 29151 chintcl 29227 omlsi 29299 pjoml 29331 pjoc2 29334 chj0i 29350 chj00i 29382 chm0 29386 chne0 29389 chocin 29390 chj0 29392 chlejb1 29407 chnle 29409 ledi 29435 chsup0 29443 h1datom 29477 cmbr3 29503 cm0 29504 pjoml2 29506 cmcm 29509 cmcm3 29510 lecm 29512 qlaxr3i 29531 nonbooli 29546 pjige0 29586 pjhfo 29601 pj11 29609 ho0f 29646 pjhmop 30045 pjidmco 30076 hst0 30128 largei 30162 mdslmd1lem3 30222 mdslmd1lem4 30223 csmdsymi 30229 elat2 30235 atcveq0 30243 hatomic 30255 atcv0eq 30274 atoml2i 30278 atordi 30279 atord 30283 atcvat2 30284 chirred 30290 |
Copyright terms: Public domain | W3C validator |