| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | climrel 15528 | . . . . 5
⊢ Rel
⇝ | 
| 2 | 1 | brrelex2i 5742 | . . . 4
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ V) | 
| 3 | 2 | a1i 11 | . . 3
⊢ (𝜑 → (𝐹 ⇝ 𝐴 → 𝐴 ∈ V)) | 
| 4 |  | elex 3501 | . . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 ∈ V) | 
| 5 | 4 | adantr 480 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V) | 
| 6 | 5 | a1i 11 | . . 3
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)) | 
| 7 |  | climf2.f | . . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) | 
| 8 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | 
| 9 | 8 | eleq1d 2826 | . . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ)) | 
| 10 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑥(𝑓 = 𝐹 ∧ 𝑦 = 𝐴) | 
| 11 |  | climf2.nf | . . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐹 | 
| 12 | 11 | nfeq2 2923 | . . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑓 = 𝐹 | 
| 13 |  | nfv 1914 | . . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑦 = 𝐴 | 
| 14 | 12, 13 | nfan 1899 | . . . . . . . . . 10
⊢
Ⅎ𝑘(𝑓 = 𝐹 ∧ 𝑦 = 𝐴) | 
| 15 |  | fveq1 6905 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | 
| 16 | 15 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑓‘𝑘) = (𝐹‘𝑘)) | 
| 17 | 16 | eleq1d 2826 | . . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) ∈ ℂ ↔ (𝐹‘𝑘) ∈ ℂ)) | 
| 18 |  | oveq12 7440 | . . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑘) = (𝐹‘𝑘) ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) | 
| 19 | 15, 18 | sylan 580 | . . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) | 
| 20 | 19 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (abs‘((𝑓‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑘) − 𝐴))) | 
| 21 | 20 | breq1d 5153 | . . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) | 
| 22 | 17, 21 | anbi12d 632 | . . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | 
| 23 | 14, 22 | ralbid 3273 | . . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | 
| 24 | 23 | rexbidv 3179 | . . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | 
| 25 | 10, 24 | ralbid 3273 | . . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | 
| 26 | 9, 25 | anbi12d 632 | . . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) | 
| 27 |  | df-clim 15524 | . . . . . 6
⊢  ⇝
= {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | 
| 28 | 26, 27 | brabga 5539 | . . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) | 
| 29 | 28 | ex 412 | . . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) | 
| 30 | 7, 29 | syl 17 | . . 3
⊢ (𝜑 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) | 
| 31 | 3, 6, 30 | pm5.21ndd 379 | . 2
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) | 
| 32 |  | climf2.1 | . . . . . 6
⊢
Ⅎ𝑘𝜑 | 
| 33 |  | eluzelz 12888 | . . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → 𝑘 ∈ ℤ) | 
| 34 |  | climf2.fv | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) | 
| 35 | 34 | eleq1d 2826 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝐹‘𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ)) | 
| 36 | 34 | fvoveq1d 7453 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(𝐵 − 𝐴))) | 
| 37 | 36 | breq1d 5153 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑥)) | 
| 38 | 35, 37 | anbi12d 632 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) | 
| 39 | 33, 38 | sylan2 593 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) | 
| 40 | 32, 39 | ralbida 3270 | . . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) | 
| 41 | 40 | rexbidv 3179 | . . . 4
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) | 
| 42 | 41 | ralbidv 3178 | . . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) | 
| 43 | 42 | anbi2d 630 | . 2
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | 
| 44 | 31, 43 | bitrd 279 | 1
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |