Step | Hyp | Ref
| Expression |
1 | | climrel 15201 |
. . . . 5
⊢ Rel
⇝ |
2 | 1 | brrelex2i 5644 |
. . . 4
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ V) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐹 ⇝ 𝐴 → 𝐴 ∈ V)) |
4 | | elex 3450 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 ∈ V) |
5 | 4 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V) |
6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)) |
7 | | clim.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
8 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) |
9 | 8 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
10 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) |
11 | 10 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑓‘𝑘) = (𝐹‘𝑘)) |
12 | 11 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) ∈ ℂ ↔ (𝐹‘𝑘) ∈ ℂ)) |
13 | | oveq12 7284 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑘) = (𝐹‘𝑘) ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) |
14 | 10, 13 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) |
15 | 14 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (abs‘((𝑓‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑘) − 𝐴))) |
16 | 15 | breq1d 5084 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) |
17 | 12, 16 | anbi12d 631 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
18 | 17 | ralbidv 3112 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
19 | 18 | rexbidv 3226 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
20 | 19 | ralbidv 3112 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
21 | 9, 20 | anbi12d 631 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
22 | | df-clim 15197 |
. . . . . 6
⊢ ⇝
= {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
23 | 21, 22 | brabga 5447 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
24 | 23 | ex 413 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) |
25 | 7, 24 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) |
26 | 3, 6, 25 | pm5.21ndd 381 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
27 | | eluzelz 12592 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → 𝑘 ∈ ℤ) |
28 | | clim.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) |
29 | 28 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝐹‘𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
30 | 28 | fvoveq1d 7297 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(𝐵 − 𝐴))) |
31 | 30 | breq1d 5084 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
32 | 29, 31 | anbi12d 631 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
33 | 27, 32 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
34 | 33 | ralbidva 3111 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
35 | 34 | rexbidv 3226 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
36 | 35 | ralbidv 3112 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
37 | 36 | anbi2d 629 |
. 2
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
38 | 26, 37 | bitrd 278 |
1
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |