Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 15206 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabiv 5732 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2107 ∀wral 3065 ∃wrex 3066 class class class wbr 5075 Rel wrel 5595 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 < clt 11018 − cmin 11214 ℤcz 12328 ℤ≥cuz 12591 ℝ+crp 12739 abscabs 14954 ⇝ cli 15202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-opab 5138 df-xp 5596 df-rel 5597 df-clim 15206 |
This theorem is referenced by: clim 15212 climcl 15217 climi 15228 climrlim2 15265 fclim 15271 climrecl 15301 climge0 15302 iserex 15377 caurcvg2 15398 caucvg 15399 iseralt 15405 fsumcvg3 15450 cvgcmpce 15539 climfsum 15541 climcnds 15572 trirecip 15584 ntrivcvgn0 15619 ovoliunlem1 24675 mbflimlem 24840 abelthlem5 25603 emcllem6 26159 lgamgulmlem4 26190 binomcxplemnn0 41974 binomcxplemnotnn0 41981 climf 43170 sumnnodd 43178 climf2 43214 climd 43220 clim2d 43221 climfv 43239 climuzlem 43291 climlimsup 43308 climlimsupcex 43317 climliminflimsupd 43349 climliminf 43354 liminflimsupclim 43355 xlimclimdm 43402 ioodvbdlimc1lem2 43480 ioodvbdlimc2lem 43482 stirlinglem12 43633 fouriersw 43779 |
Copyright terms: Public domain | W3C validator |