Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 15125 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 < clt 10940 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 abscabs 14873 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-clim 15125 |
This theorem is referenced by: clim 15131 climcl 15136 climi 15147 climrlim2 15184 fclim 15190 climrecl 15220 climge0 15221 iserex 15296 caurcvg2 15317 caucvg 15318 iseralt 15324 fsumcvg3 15369 cvgcmpce 15458 climfsum 15460 climcnds 15491 trirecip 15503 ntrivcvgn0 15538 ovoliunlem1 24571 mbflimlem 24736 abelthlem5 25499 emcllem6 26055 lgamgulmlem4 26086 binomcxplemnn0 41856 binomcxplemnotnn0 41863 climf 43053 sumnnodd 43061 climf2 43097 climd 43103 clim2d 43104 climfv 43122 climuzlem 43174 climlimsup 43191 climlimsupcex 43200 climliminflimsupd 43232 climliminf 43237 liminflimsupclim 43238 xlimclimdm 43285 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 stirlinglem12 43516 fouriersw 43662 |
Copyright terms: Public domain | W3C validator |