MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrel Structured version   Visualization version   GIF version

Theorem climrel 15417
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel Rel ⇝

Proof of Theorem climrel
Dummy variables 𝑗 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 15413 . 2 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
21relopabiv 5767 1 Rel ⇝
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wral 3044  wrex 3053   class class class wbr 5095  Rel wrel 5628  cfv 6486  (class class class)co 7353  cc 11026   < clt 11168  cmin 11365  cz 12489  cuz 12753  +crp 12911  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-ss 3922  df-opab 5158  df-xp 5629  df-rel 5630  df-clim 15413
This theorem is referenced by:  clim  15419  climcl  15424  climi  15435  climrlim2  15472  fclim  15478  climrecl  15508  climge0  15509  iserex  15582  caurcvg2  15603  caucvg  15604  iseralt  15610  fsumcvg3  15654  cvgcmpce  15743  climfsum  15745  climcnds  15776  trirecip  15788  ntrivcvgn0  15823  ovoliunlem1  25419  mbflimlem  25584  abelthlem5  26361  emcllem6  26927  lgamgulmlem4  26958  binomcxplemnn0  44322  binomcxplemnotnn0  44329  climf  45604  sumnnodd  45612  climf2  45648  climd  45654  clim2d  45655  climfv  45673  climuzlem  45725  climlimsup  45742  climlimsupcex  45751  climliminflimsupd  45783  climliminf  45788  liminflimsupclim  45789  xlimclimdm  45836  ioodvbdlimc1lem2  45914  ioodvbdlimc2lem  45916  stirlinglem12  46067  fouriersw  46213
  Copyright terms: Public domain W3C validator