| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15397 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5764 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 < clt 11153 − cmin 11351 ℤcz 12475 ℤ≥cuz 12738 ℝ+crp 12892 abscabs 15143 ⇝ cli 15393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-clim 15397 |
| This theorem is referenced by: clim 15403 climcl 15408 climi 15419 climrlim2 15456 fclim 15462 climrecl 15492 climge0 15493 iserex 15566 caurcvg2 15587 caucvg 15588 iseralt 15594 fsumcvg3 15638 cvgcmpce 15727 climfsum 15729 climcnds 15760 trirecip 15772 ntrivcvgn0 15807 ovoliunlem1 25431 mbflimlem 25596 abelthlem5 26373 emcllem6 26939 lgamgulmlem4 26970 binomcxplemnn0 44466 binomcxplemnotnn0 44473 climf 45746 sumnnodd 45754 climf2 45788 climd 45794 clim2d 45795 climfv 45813 climuzlem 45865 climlimsup 45882 climlimsupcex 45891 climliminflimsupd 45923 climliminf 45928 liminflimsupclim 45929 xlimclimdm 45976 ioodvbdlimc1lem2 46054 ioodvbdlimc2lem 46056 stirlinglem12 46207 fouriersw 46353 |
| Copyright terms: Public domain | W3C validator |