MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrel Structured version   Visualization version   GIF version

Theorem climrel 15463
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel Rel ⇝

Proof of Theorem climrel
Dummy variables 𝑗 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 15459 . 2 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
21relopabiv 5817 1 Rel ⇝
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2099  wral 3057  wrex 3066   class class class wbr 5143  Rel wrel 5678  cfv 6543  (class class class)co 7415  cc 11131   < clt 11273  cmin 11469  cz 12583  cuz 12847  +crp 13001  abscabs 15208  cli 15455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-in 3952  df-ss 3962  df-opab 5206  df-xp 5679  df-rel 5680  df-clim 15459
This theorem is referenced by:  clim  15465  climcl  15470  climi  15481  climrlim2  15518  fclim  15524  climrecl  15554  climge0  15555  iserex  15630  caurcvg2  15651  caucvg  15652  iseralt  15658  fsumcvg3  15702  cvgcmpce  15791  climfsum  15793  climcnds  15824  trirecip  15836  ntrivcvgn0  15871  ovoliunlem1  25425  mbflimlem  25590  abelthlem5  26366  emcllem6  26927  lgamgulmlem4  26958  binomcxplemnn0  43777  binomcxplemnotnn0  43784  climf  45001  sumnnodd  45009  climf2  45045  climd  45051  clim2d  45052  climfv  45070  climuzlem  45122  climlimsup  45139  climlimsupcex  45148  climliminflimsupd  45180  climliminf  45185  liminflimsupclim  45186  xlimclimdm  45233  ioodvbdlimc1lem2  45311  ioodvbdlimc2lem  45313  stirlinglem12  45464  fouriersw  45610
  Copyright terms: Public domain W3C validator