MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrel Structured version   Visualization version   GIF version

Theorem climrel 15401
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel Rel ⇝

Proof of Theorem climrel
Dummy variables 𝑗 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 15397 . 2 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
21relopabiv 5764 1 Rel ⇝
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2113  wral 3048  wrex 3057   class class class wbr 5093  Rel wrel 5624  cfv 6486  (class class class)co 7352  cc 11011   < clt 11153  cmin 11351  cz 12475  cuz 12738  +crp 12892  abscabs 15143  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-opab 5156  df-xp 5625  df-rel 5626  df-clim 15397
This theorem is referenced by:  clim  15403  climcl  15408  climi  15419  climrlim2  15456  fclim  15462  climrecl  15492  climge0  15493  iserex  15566  caurcvg2  15587  caucvg  15588  iseralt  15594  fsumcvg3  15638  cvgcmpce  15727  climfsum  15729  climcnds  15760  trirecip  15772  ntrivcvgn0  15807  ovoliunlem1  25431  mbflimlem  25596  abelthlem5  26373  emcllem6  26939  lgamgulmlem4  26970  binomcxplemnn0  44466  binomcxplemnotnn0  44473  climf  45746  sumnnodd  45754  climf2  45788  climd  45794  clim2d  45795  climfv  45813  climuzlem  45865  climlimsup  45882  climlimsupcex  45891  climliminflimsupd  45923  climliminf  45928  liminflimsupclim  45929  xlimclimdm  45976  ioodvbdlimc1lem2  46054  ioodvbdlimc2lem  46056  stirlinglem12  46207  fouriersw  46353
  Copyright terms: Public domain W3C validator