| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15454 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 < clt 11208 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 abscabs 15200 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-clim 15454 |
| This theorem is referenced by: clim 15460 climcl 15465 climi 15476 climrlim2 15513 fclim 15519 climrecl 15549 climge0 15550 iserex 15623 caurcvg2 15644 caucvg 15645 iseralt 15651 fsumcvg3 15695 cvgcmpce 15784 climfsum 15786 climcnds 15817 trirecip 15829 ntrivcvgn0 15864 ovoliunlem1 25403 mbflimlem 25568 abelthlem5 26345 emcllem6 26911 lgamgulmlem4 26942 binomcxplemnn0 44338 binomcxplemnotnn0 44345 climf 45620 sumnnodd 45628 climf2 45664 climd 45670 clim2d 45671 climfv 45689 climuzlem 45741 climlimsup 45758 climlimsupcex 45767 climliminflimsupd 45799 climliminf 45804 liminflimsupclim 45805 xlimclimdm 45852 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 stirlinglem12 46083 fouriersw 46229 |
| Copyright terms: Public domain | W3C validator |