| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15461 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 < clt 11215 − cmin 11412 ℤcz 12536 ℤ≥cuz 12800 ℝ+crp 12958 abscabs 15207 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-clim 15461 |
| This theorem is referenced by: clim 15467 climcl 15472 climi 15483 climrlim2 15520 fclim 15526 climrecl 15556 climge0 15557 iserex 15630 caurcvg2 15651 caucvg 15652 iseralt 15658 fsumcvg3 15702 cvgcmpce 15791 climfsum 15793 climcnds 15824 trirecip 15836 ntrivcvgn0 15871 ovoliunlem1 25410 mbflimlem 25575 abelthlem5 26352 emcllem6 26918 lgamgulmlem4 26949 binomcxplemnn0 44345 binomcxplemnotnn0 44352 climf 45627 sumnnodd 45635 climf2 45671 climd 45677 clim2d 45678 climfv 45696 climuzlem 45748 climlimsup 45765 climlimsupcex 45774 climliminflimsupd 45806 climliminf 45811 liminflimsupclim 45812 xlimclimdm 45859 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 stirlinglem12 46090 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |