| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15392 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5091 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 < clt 11143 − cmin 11341 ℤcz 12465 ℤ≥cuz 12729 ℝ+crp 12887 abscabs 15138 ⇝ cli 15388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-clim 15392 |
| This theorem is referenced by: clim 15398 climcl 15403 climi 15414 climrlim2 15451 fclim 15457 climrecl 15487 climge0 15488 iserex 15561 caurcvg2 15582 caucvg 15583 iseralt 15589 fsumcvg3 15633 cvgcmpce 15722 climfsum 15724 climcnds 15755 trirecip 15767 ntrivcvgn0 15802 ovoliunlem1 25428 mbflimlem 25593 abelthlem5 26370 emcllem6 26936 lgamgulmlem4 26967 binomcxplemnn0 44381 binomcxplemnotnn0 44388 climf 45661 sumnnodd 45669 climf2 45703 climd 45709 clim2d 45710 climfv 45728 climuzlem 45780 climlimsup 45797 climlimsupcex 45806 climliminflimsupd 45838 climliminf 45843 liminflimsupclim 45844 xlimclimdm 45891 ioodvbdlimc1lem2 45969 ioodvbdlimc2lem 45971 stirlinglem12 46122 fouriersw 46268 |
| Copyright terms: Public domain | W3C validator |