Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 14893 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabi 5663 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 class class class wbr 5032 Rel wrel 5529 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 < clt 10713 − cmin 10908 ℤcz 12020 ℤ≥cuz 12282 ℝ+crp 12430 abscabs 14641 ⇝ cli 14889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-opab 5095 df-xp 5530 df-rel 5531 df-clim 14893 |
This theorem is referenced by: clim 14899 climcl 14904 climi 14915 climrlim2 14952 fclim 14958 climrecl 14988 climge0 14989 iserex 15061 caurcvg2 15082 caucvg 15083 iseralt 15089 fsumcvg3 15134 cvgcmpce 15221 climfsum 15223 climcnds 15254 trirecip 15266 ntrivcvgn0 15302 ovoliunlem1 24202 mbflimlem 24367 abelthlem5 25129 emcllem6 25685 lgamgulmlem4 25716 binomcxplemnn0 41426 binomcxplemnotnn0 41433 climf 42630 sumnnodd 42638 climf2 42674 climd 42680 clim2d 42681 climfv 42699 climuzlem 42751 climlimsup 42768 climlimsupcex 42777 climliminflimsupd 42809 climliminf 42814 liminflimsupclim 42815 xlimclimdm 42862 ioodvbdlimc1lem2 42940 ioodvbdlimc2lem 42942 stirlinglem12 43093 fouriersw 43239 |
Copyright terms: Public domain | W3C validator |