| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15491 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5796 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 class class class wbr 5116 Rel wrel 5656 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 < clt 11261 − cmin 11458 ℤcz 12580 ℤ≥cuz 12844 ℝ+crp 13000 abscabs 15240 ⇝ cli 15487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-ss 3941 df-opab 5179 df-xp 5657 df-rel 5658 df-clim 15491 |
| This theorem is referenced by: clim 15497 climcl 15502 climi 15513 climrlim2 15550 fclim 15556 climrecl 15586 climge0 15587 iserex 15660 caurcvg2 15681 caucvg 15682 iseralt 15688 fsumcvg3 15732 cvgcmpce 15821 climfsum 15823 climcnds 15854 trirecip 15866 ntrivcvgn0 15901 ovoliunlem1 25440 mbflimlem 25605 abelthlem5 26382 emcllem6 26947 lgamgulmlem4 26978 binomcxplemnn0 44299 binomcxplemnotnn0 44306 climf 45581 sumnnodd 45589 climf2 45625 climd 45631 clim2d 45632 climfv 45650 climuzlem 45702 climlimsup 45719 climlimsupcex 45728 climliminflimsupd 45760 climliminf 45765 liminflimsupclim 45766 xlimclimdm 45813 ioodvbdlimc1lem2 45891 ioodvbdlimc2lem 45893 stirlinglem12 46044 fouriersw 46190 |
| Copyright terms: Public domain | W3C validator |