![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 15520 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabiv 5832 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 class class class wbr 5147 Rel wrel 5693 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 < clt 11292 − cmin 11489 ℤcz 12610 ℤ≥cuz 12875 ℝ+crp 13031 abscabs 15269 ⇝ cli 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 df-clim 15520 |
This theorem is referenced by: clim 15526 climcl 15531 climi 15542 climrlim2 15579 fclim 15585 climrecl 15615 climge0 15616 iserex 15689 caurcvg2 15710 caucvg 15711 iseralt 15717 fsumcvg3 15761 cvgcmpce 15850 climfsum 15852 climcnds 15883 trirecip 15895 ntrivcvgn0 15930 ovoliunlem1 25550 mbflimlem 25715 abelthlem5 26493 emcllem6 27058 lgamgulmlem4 27089 binomcxplemnn0 44344 binomcxplemnotnn0 44351 climf 45577 sumnnodd 45585 climf2 45621 climd 45627 clim2d 45628 climfv 45646 climuzlem 45698 climlimsup 45715 climlimsupcex 45724 climliminflimsupd 45756 climliminf 45761 liminflimsupclim 45762 xlimclimdm 45809 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 stirlinglem12 46040 fouriersw 46186 |
Copyright terms: Public domain | W3C validator |