![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 15459 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabiv 5817 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 class class class wbr 5143 Rel wrel 5678 ‘cfv 6543 (class class class)co 7415 ℂcc 11131 < clt 11273 − cmin 11469 ℤcz 12583 ℤ≥cuz 12847 ℝ+crp 13001 abscabs 15208 ⇝ cli 15455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 df-opab 5206 df-xp 5679 df-rel 5680 df-clim 15459 |
This theorem is referenced by: clim 15465 climcl 15470 climi 15481 climrlim2 15518 fclim 15524 climrecl 15554 climge0 15555 iserex 15630 caurcvg2 15651 caucvg 15652 iseralt 15658 fsumcvg3 15702 cvgcmpce 15791 climfsum 15793 climcnds 15824 trirecip 15836 ntrivcvgn0 15871 ovoliunlem1 25425 mbflimlem 25590 abelthlem5 26366 emcllem6 26927 lgamgulmlem4 26958 binomcxplemnn0 43777 binomcxplemnotnn0 43784 climf 45001 sumnnodd 45009 climf2 45045 climd 45051 clim2d 45052 climfv 45070 climuzlem 45122 climlimsup 45139 climlimsupcex 45148 climliminflimsupd 45180 climliminf 45185 liminflimsupclim 45186 xlimclimdm 45233 ioodvbdlimc1lem2 45311 ioodvbdlimc2lem 45313 stirlinglem12 45464 fouriersw 45610 |
Copyright terms: Public domain | W3C validator |