| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15504 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5799 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 Rel wrel 5659 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 < clt 11269 − cmin 11466 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 abscabs 15253 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 df-clim 15504 |
| This theorem is referenced by: clim 15510 climcl 15515 climi 15526 climrlim2 15563 fclim 15569 climrecl 15599 climge0 15600 iserex 15673 caurcvg2 15694 caucvg 15695 iseralt 15701 fsumcvg3 15745 cvgcmpce 15834 climfsum 15836 climcnds 15867 trirecip 15879 ntrivcvgn0 15914 ovoliunlem1 25455 mbflimlem 25620 abelthlem5 26397 emcllem6 26963 lgamgulmlem4 26994 binomcxplemnn0 44373 binomcxplemnotnn0 44380 climf 45651 sumnnodd 45659 climf2 45695 climd 45701 clim2d 45702 climfv 45720 climuzlem 45772 climlimsup 45789 climlimsupcex 45798 climliminflimsupd 45830 climliminf 45835 liminflimsupclim 45836 xlimclimdm 45883 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 stirlinglem12 46114 fouriersw 46260 |
| Copyright terms: Public domain | W3C validator |