| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version | ||
| Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climrel | ⊢ Rel ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim 15413 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
| 2 | 1 | relopabiv 5767 | 1 ⊢ Rel ⇝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5095 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 < clt 11168 − cmin 11365 ℤcz 12489 ℤ≥cuz 12753 ℝ+crp 12911 abscabs 15159 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-opab 5158 df-xp 5629 df-rel 5630 df-clim 15413 |
| This theorem is referenced by: clim 15419 climcl 15424 climi 15435 climrlim2 15472 fclim 15478 climrecl 15508 climge0 15509 iserex 15582 caurcvg2 15603 caucvg 15604 iseralt 15610 fsumcvg3 15654 cvgcmpce 15743 climfsum 15745 climcnds 15776 trirecip 15788 ntrivcvgn0 15823 ovoliunlem1 25419 mbflimlem 25584 abelthlem5 26361 emcllem6 26927 lgamgulmlem4 26958 binomcxplemnn0 44322 binomcxplemnotnn0 44329 climf 45604 sumnnodd 45612 climf2 45648 climd 45654 clim2d 45655 climfv 45673 climuzlem 45725 climlimsup 45742 climlimsupcex 45751 climliminflimsupd 45783 climliminf 45788 liminflimsupclim 45789 xlimclimdm 45836 ioodvbdlimc1lem2 45914 ioodvbdlimc2lem 45916 stirlinglem12 46067 fouriersw 46213 |
| Copyright terms: Public domain | W3C validator |