MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrel Structured version   Visualization version   GIF version

Theorem climrel 14841
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel Rel ⇝

Proof of Theorem climrel
Dummy variables 𝑗 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 14837 . 2 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
21relopabi 5658 1 Rel ⇝
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  Rel wrel 5524  cfv 6324  (class class class)co 7135  cc 10524   < clt 10664  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093  df-xp 5525  df-rel 5526  df-clim 14837
This theorem is referenced by:  clim  14843  climcl  14848  climi  14859  climrlim2  14896  fclim  14902  climrecl  14932  climge0  14933  iserex  15005  caurcvg2  15026  caucvg  15027  iseralt  15033  fsumcvg3  15078  cvgcmpce  15165  climfsum  15167  climcnds  15198  trirecip  15210  ntrivcvgn0  15246  ovoliunlem1  24106  mbflimlem  24271  abelthlem5  25030  emcllem6  25586  lgamgulmlem4  25617  binomcxplemnn0  41053  binomcxplemnotnn0  41060  climf  42264  sumnnodd  42272  climf2  42308  climd  42314  clim2d  42315  climfv  42333  climuzlem  42385  climlimsup  42402  climlimsupcex  42411  climliminflimsupd  42443  climliminf  42448  liminflimsupclim  42449  xlimclimdm  42496  ioodvbdlimc1lem2  42574  ioodvbdlimc2lem  42576  stirlinglem12  42727  fouriersw  42873
  Copyright terms: Public domain W3C validator