| Step | Hyp | Ref
| Expression |
| 1 | | climrel 15509 |
. . . . 5
⊢ Rel
⇝ |
| 2 | 1 | brrelex2i 5722 |
. . . 4
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ V) |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐹 ⇝ 𝐴 → 𝐴 ∈ V)) |
| 4 | | elex 3484 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 ∈ V) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V) |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)) |
| 7 | | climf.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 8 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) |
| 9 | 8 | eleq1d 2818 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
| 10 | | nfv 1913 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑓 = 𝐹 ∧ 𝑦 = 𝐴) |
| 11 | | climf.nf |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐹 |
| 12 | 11 | nfeq2 2915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑓 = 𝐹 |
| 13 | | nfv 1913 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑦 = 𝐴 |
| 14 | 12, 13 | nfan 1898 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑓 = 𝐹 ∧ 𝑦 = 𝐴) |
| 15 | | fveq1 6884 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑓‘𝑘) = (𝐹‘𝑘)) |
| 17 | 16 | eleq1d 2818 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) ∈ ℂ ↔ (𝐹‘𝑘) ∈ ℂ)) |
| 18 | | oveq12 7421 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑘) = (𝐹‘𝑘) ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) |
| 19 | 15, 18 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) |
| 20 | 19 | fveq2d 6889 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (abs‘((𝑓‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑘) − 𝐴))) |
| 21 | 20 | breq1d 5133 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) |
| 22 | 17, 21 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 23 | 14, 22 | ralbid 3258 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 24 | 23 | rexbidv 3166 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 25 | 10, 24 | ralbid 3258 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 26 | 9, 25 | anbi12d 632 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 27 | | df-clim 15505 |
. . . . . 6
⊢ ⇝
= {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
| 28 | 26, 27 | brabga 5519 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 29 | 28 | ex 412 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) |
| 30 | 7, 29 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) |
| 31 | 3, 6, 30 | pm5.21ndd 379 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 32 | | eluzelz 12869 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → 𝑘 ∈ ℤ) |
| 33 | | climf.fv |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) |
| 34 | 33 | eleq1d 2818 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝐹‘𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 35 | 33 | fvoveq1d 7434 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(𝐵 − 𝐴))) |
| 36 | 35 | breq1d 5133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
| 37 | 34, 36 | anbi12d 632 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 38 | 32, 37 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 39 | 38 | ralbidva 3163 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 40 | 39 | rexbidv 3166 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 41 | 40 | ralbidv 3165 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 42 | 41 | anbi2d 630 |
. 2
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
| 43 | 31, 42 | bitrd 279 |
1
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |