Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climf Structured version   Visualization version   GIF version

Theorem climf 42262
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 14843, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climf.nf 𝑘𝐹
climf.f (𝜑𝐹𝑉)
climf.fv ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)
Assertion
Ref Expression
climf (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem climf
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14841 . . . . 5 Rel ⇝
21brrelex2i 5573 . . . 4 (𝐹𝐴𝐴 ∈ V)
32a1i 11 . . 3 (𝜑 → (𝐹𝐴𝐴 ∈ V))
4 elex 3459 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ V)
54adantr 484 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)
65a1i 11 . . 3 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V))
7 climf.f . . . 4 (𝜑𝐹𝑉)
8 simpr 488 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐴) → 𝑦 = 𝐴)
98eleq1d 2874 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ))
10 nfv 1915 . . . . . . . 8 𝑥(𝑓 = 𝐹𝑦 = 𝐴)
11 climf.nf . . . . . . . . . . . 12 𝑘𝐹
1211nfeq2 2972 . . . . . . . . . . 11 𝑘 𝑓 = 𝐹
13 nfv 1915 . . . . . . . . . . 11 𝑘 𝑦 = 𝐴
1412, 13nfan 1900 . . . . . . . . . 10 𝑘(𝑓 = 𝐹𝑦 = 𝐴)
15 fveq1 6644 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
1615adantr 484 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐴) → (𝑓𝑘) = (𝐹𝑘))
1716eleq1d 2874 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑓𝑘) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
18 oveq12 7144 . . . . . . . . . . . . . 14 (((𝑓𝑘) = (𝐹𝑘) ∧ 𝑦 = 𝐴) → ((𝑓𝑘) − 𝑦) = ((𝐹𝑘) − 𝐴))
1915, 18sylan 583 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑓𝑘) − 𝑦) = ((𝐹𝑘) − 𝐴))
2019fveq2d 6649 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐴) → (abs‘((𝑓𝑘) − 𝑦)) = (abs‘((𝐹𝑘) − 𝐴)))
2120breq1d 5040 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐴) → ((abs‘((𝑓𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2217, 21anbi12d 633 . . . . . . . . . 10 ((𝑓 = 𝐹𝑦 = 𝐴) → (((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2314, 22ralbid 3195 . . . . . . . . 9 ((𝑓 = 𝐹𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2423rexbidv 3256 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2510, 24ralbid 3195 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
269, 25anbi12d 633 . . . . . 6 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
27 df-clim 14837 . . . . . 6 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
2826, 27brabga 5386 . . . . 5 ((𝐹𝑉𝐴 ∈ V) → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2928ex 416 . . . 4 (𝐹𝑉 → (𝐴 ∈ V → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))))
307, 29syl 17 . . 3 (𝜑 → (𝐴 ∈ V → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))))
313, 6, 30pm5.21ndd 384 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
32 eluzelz 12241 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
33 climf.fv . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)
3433eleq1d 2874 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((𝐹𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ))
3533fvoveq1d 7157 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐵𝐴)))
3635breq1d 5040 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
3734, 36anbi12d 633 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3832, 37sylan2 595 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3938ralbidva 3161 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4039rexbidv 3256 . . . 4 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4140ralbidv 3162 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4241anbi2d 631 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
4331, 42bitrd 282 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wnfc 2936  wral 3106  wrex 3107  Vcvv 3441   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524   < clt 10664  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-neg 10862  df-z 11970  df-uz 12232  df-clim 14837
This theorem is referenced by:  clim2f  42276
  Copyright terms: Public domain W3C validator