Step | Hyp | Ref
| Expression |
1 | | fveq1 6890 |
. . . . . . . . 9
β’ (π‘ = π β (π‘βπ€) = (πβπ€)) |
2 | | fveq1 6890 |
. . . . . . . . 9
β’ (π‘ = π β (π‘βπ₯) = (πβπ₯)) |
3 | 1, 2 | oveq12d 7430 |
. . . . . . . 8
β’ (π‘ = π β ((π‘βπ€) β (π‘βπ₯)) = ((πβπ€) β (πβπ₯))) |
4 | 3 | fveq2d 6895 |
. . . . . . 7
β’ (π‘ = π β (absβ((π‘βπ€) β (π‘βπ₯))) = (absβ((πβπ€) β (πβπ₯)))) |
5 | 4 | breq1d 5158 |
. . . . . 6
β’ (π‘ = π β ((absβ((π‘βπ€) β (π‘βπ₯))) < π¦ β (absβ((πβπ€) β (πβπ₯))) < π¦)) |
6 | 5 | imbi2d 340 |
. . . . 5
β’ (π‘ = π β
(((normββ(π€ ββ π₯)) < π§ β (absβ((π‘βπ€) β (π‘βπ₯))) < π¦) β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦))) |
7 | 6 | rexralbidv 3219 |
. . . 4
β’ (π‘ = π β (βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((π‘βπ€) β (π‘βπ₯))) < π¦) β βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦))) |
8 | 7 | 2ralbidv 3217 |
. . 3
β’ (π‘ = π β (βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((π‘βπ€) β (π‘βπ₯))) < π¦) β βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦))) |
9 | | df-cnfn 31534 |
. . 3
β’ ContFn =
{π‘ β (β
βm β) β£ βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((π‘βπ€) β (π‘βπ₯))) < π¦)} |
10 | 8, 9 | elrab2 3686 |
. 2
β’ (π β ContFn β (π β (β
βm β) β§ βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦))) |
11 | | cnex 11197 |
. . . 4
β’ β
β V |
12 | | ax-hilex 30686 |
. . . 4
β’ β
β V |
13 | 11, 12 | elmap 8871 |
. . 3
β’ (π β (β
βm β) β π: ββΆβ) |
14 | 13 | anbi1i 623 |
. 2
β’ ((π β (β
βm β) β§ βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦)) β (π: ββΆβ β§ βπ₯ β β βπ¦ β β+
βπ§ β
β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦))) |
15 | 10, 14 | bitri 275 |
1
β’ (π β ContFn β (π: ββΆβ β§
βπ₯ β β
βπ¦ β
β+ βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((πβπ€) β (πβπ₯))) < π¦))) |