HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnfn Structured version   Visualization version   GIF version

Theorem elcnfn 31863
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnfn (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝑇

Proof of Theorem elcnfn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6875 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑤) = (𝑇𝑤))
2 fveq1 6875 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
31, 2oveq12d 7423 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑤) − (𝑡𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
43fveq2d 6880 . . . . . . 7 (𝑡 = 𝑇 → (abs‘((𝑡𝑤) − (𝑡𝑥))) = (abs‘((𝑇𝑤) − (𝑇𝑥))))
54breq1d 5129 . . . . . 6 (𝑡 = 𝑇 → ((abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦 ↔ (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦))
65imbi2d 340 . . . . 5 (𝑡 = 𝑇 → (((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
76rexralbidv 3207 . . . 4 (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
872ralbidv 3205 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
9 df-cnfn 31828 . . 3 ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
108, 9elrab2 3674 . 2 (𝑇 ∈ ContFn ↔ (𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
11 cnex 11210 . . . 4 ℂ ∈ V
12 ax-hilex 30980 . . . 4 ℋ ∈ V
1311, 12elmap 8885 . . 3 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
1413anbi1i 624 . 2 ((𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
1510, 14bitri 275 1 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  cc 11127   < clt 11269  cmin 11466  +crp 13008  abscabs 15253  chba 30900  normcno 30904   cmv 30906  ContFnccnfn 30934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-hilex 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-cnfn 31828
This theorem is referenced by:  cnfnc  31911  0cnfn  31961  lnfnconi  32036
  Copyright terms: Public domain W3C validator