HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnfn Structured version   Visualization version   GIF version

Theorem elcnfn 31862
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnfn (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝑇

Proof of Theorem elcnfn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6821 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑤) = (𝑇𝑤))
2 fveq1 6821 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
31, 2oveq12d 7364 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑤) − (𝑡𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
43fveq2d 6826 . . . . . . 7 (𝑡 = 𝑇 → (abs‘((𝑡𝑤) − (𝑡𝑥))) = (abs‘((𝑇𝑤) − (𝑇𝑥))))
54breq1d 5099 . . . . . 6 (𝑡 = 𝑇 → ((abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦 ↔ (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦))
65imbi2d 340 . . . . 5 (𝑡 = 𝑇 → (((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
76rexralbidv 3198 . . . 4 (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
872ralbidv 3196 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
9 df-cnfn 31827 . . 3 ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
108, 9elrab2 3645 . 2 (𝑇 ∈ ContFn ↔ (𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
11 cnex 11087 . . . 4 ℂ ∈ V
12 ax-hilex 30979 . . . 4 ℋ ∈ V
1311, 12elmap 8795 . . 3 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
1413anbi1i 624 . 2 ((𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
1510, 14bitri 275 1 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004   < clt 11146  cmin 11344  +crp 12890  abscabs 15141  chba 30899  normcno 30903   cmv 30905  ContFnccnfn 30933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-hilex 30979
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-cnfn 31827
This theorem is referenced by:  cnfnc  31910  0cnfn  31960  lnfnconi  32035
  Copyright terms: Public domain W3C validator