HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnfn Structured version   Visualization version   GIF version

Theorem elcnfn 31569
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnfn (𝑇 ∈ ContFn ↔ (𝑇: β„‹βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
Distinct variable group:   π‘₯,𝑀,𝑦,𝑧,𝑇

Proof of Theorem elcnfn
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6890 . . . . . . . . 9 (𝑑 = 𝑇 β†’ (π‘‘β€˜π‘€) = (π‘‡β€˜π‘€))
2 fveq1 6890 . . . . . . . . 9 (𝑑 = 𝑇 β†’ (π‘‘β€˜π‘₯) = (π‘‡β€˜π‘₯))
31, 2oveq12d 7430 . . . . . . . 8 (𝑑 = 𝑇 β†’ ((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯)) = ((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯)))
43fveq2d 6895 . . . . . . 7 (𝑑 = 𝑇 β†’ (absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) = (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))))
54breq1d 5158 . . . . . 6 (𝑑 = 𝑇 β†’ ((absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) < 𝑦 ↔ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦))
65imbi2d 340 . . . . 5 (𝑑 = 𝑇 β†’ (((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) < 𝑦) ↔ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
76rexralbidv 3219 . . . 4 (𝑑 = 𝑇 β†’ (βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) < 𝑦) ↔ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
872ralbidv 3217 . . 3 (𝑑 = 𝑇 β†’ (βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) < 𝑦) ↔ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
9 df-cnfn 31534 . . 3 ContFn = {𝑑 ∈ (β„‚ ↑m β„‹) ∣ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) < 𝑦)}
108, 9elrab2 3686 . 2 (𝑇 ∈ ContFn ↔ (𝑇 ∈ (β„‚ ↑m β„‹) ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
11 cnex 11197 . . . 4 β„‚ ∈ V
12 ax-hilex 30686 . . . 4 β„‹ ∈ V
1311, 12elmap 8871 . . 3 (𝑇 ∈ (β„‚ ↑m β„‹) ↔ 𝑇: β„‹βŸΆβ„‚)
1413anbi1i 623 . 2 ((𝑇 ∈ (β„‚ ↑m β„‹) ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)) ↔ (𝑇: β„‹βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
1510, 14bitri 275 1 (𝑇 ∈ ContFn ↔ (𝑇: β„‹βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ↑m cmap 8826  β„‚cc 11114   < clt 11255   βˆ’ cmin 11451  β„+crp 12981  abscabs 15188   β„‹chba 30606  normβ„Žcno 30610   βˆ’β„Ž cmv 30612  ContFnccnfn 30640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-hilex 30686
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-cnfn 31534
This theorem is referenced by:  cnfnc  31617  0cnfn  31667  lnfnconi  31742
  Copyright terms: Public domain W3C validator