Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elcnfn | Structured version Visualization version GIF version |
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elcnfn | ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6661 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑤) = (𝑇‘𝑤)) | |
2 | fveq1 6661 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
3 | 1, 2 | oveq12d 7173 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑤) − (𝑡‘𝑥)) = ((𝑇‘𝑤) − (𝑇‘𝑥))) |
4 | 3 | fveq2d 6666 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) = (abs‘((𝑇‘𝑤) − (𝑇‘𝑥)))) |
5 | 4 | breq1d 5045 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦 ↔ (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦)) |
6 | 5 | imbi2d 344 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) ↔ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
7 | 6 | rexralbidv 3225 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
8 | 7 | 2ralbidv 3128 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
9 | df-cnfn 29734 | . . 3 ⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} | |
10 | 8, 9 | elrab2 3607 | . 2 ⊢ (𝑇 ∈ ContFn ↔ (𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
11 | cnex 10661 | . . . 4 ⊢ ℂ ∈ V | |
12 | ax-hilex 28886 | . . . 4 ⊢ ℋ ∈ V | |
13 | 11, 12 | elmap 8458 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
14 | 13 | anbi1i 626 | . 2 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
15 | 10, 14 | bitri 278 | 1 ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 class class class wbr 5035 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 ℂcc 10578 < clt 10718 − cmin 10913 ℝ+crp 12435 abscabs 14646 ℋchba 28806 normℎcno 28810 −ℎ cmv 28812 ContFnccnfn 28840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-hilex 28886 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-map 8423 df-cnfn 29734 |
This theorem is referenced by: cnfnc 29817 0cnfn 29867 lnfnconi 29942 |
Copyright terms: Public domain | W3C validator |