![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elcnfn | Structured version Visualization version GIF version |
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elcnfn | ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6880 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑤) = (𝑇‘𝑤)) | |
2 | fveq1 6880 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
3 | 1, 2 | oveq12d 7419 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑤) − (𝑡‘𝑥)) = ((𝑇‘𝑤) − (𝑇‘𝑥))) |
4 | 3 | fveq2d 6885 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) = (abs‘((𝑇‘𝑤) − (𝑇‘𝑥)))) |
5 | 4 | breq1d 5148 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦 ↔ (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦)) |
6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) ↔ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
7 | 6 | rexralbidv 3212 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
8 | 7 | 2ralbidv 3210 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
9 | df-cnfn 31524 | . . 3 ⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} | |
10 | 8, 9 | elrab2 3678 | . 2 ⊢ (𝑇 ∈ ContFn ↔ (𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
11 | cnex 11186 | . . . 4 ⊢ ℂ ∈ V | |
12 | ax-hilex 30676 | . . . 4 ⊢ ℋ ∈ V | |
13 | 11, 12 | elmap 8860 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
14 | 13 | anbi1i 623 | . 2 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
15 | 10, 14 | bitri 275 | 1 ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 class class class wbr 5138 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 ↑m cmap 8815 ℂcc 11103 < clt 11244 − cmin 11440 ℝ+crp 12970 abscabs 15177 ℋchba 30596 normℎcno 30600 −ℎ cmv 30602 ContFnccnfn 30630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-hilex 30676 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-cnfn 31524 |
This theorem is referenced by: cnfnc 31607 0cnfn 31657 lnfnconi 31732 |
Copyright terms: Public domain | W3C validator |