HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcnf Structured version   Visualization version   GIF version

Theorem hhcnf 30910
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
hhcn.4 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
hhcnf ContFn = (𝐽 Cn 𝐾)

Proof of Theorem hhcnf
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3406 . 2 {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnfn 30852 . 2 ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 30201 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 30148 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2771 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 712 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 5120 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelcdm 7037 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℂ)
10 ffvelcdm 7037 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℂ)
119, 10anim12dan 619 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ))
12 eqid 2731 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1312cnmetdval 24171 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑥) − (𝑡𝑤))))
14 abssub 15223 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → (abs‘((𝑡𝑥) − (𝑡𝑤))) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1513, 14eqtrd 2771 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1611, 15syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1716anassrs 468 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1817breq1d 5120 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦 ↔ (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
198, 18imbi12d 344 . . . . . . . . 9 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019ralbidva 3168 . . . . . . . 8 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120rexbidv 3171 . . . . . . 7 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidv 3170 . . . . . 6 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322ralbidva 3168 . . . . 5 (𝑡: ℋ⟶ℂ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2423pm5.32i 575 . . . 4 ((𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
253hilxmet 30200 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
26 cnxmet 24173 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
27 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
28 hhcn.4 . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
2928cnfldtopn 24182 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
3027, 29metcn 23936 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦))))
3125, 26, 30mp2an 690 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)))
32 cnex 11141 . . . . . 6 ℂ ∈ V
33 ax-hilex 30004 . . . . . 6 ℋ ∈ V
3432, 33elmap 8816 . . . . 5 (𝑡 ∈ (ℂ ↑m ℋ) ↔ 𝑡: ℋ⟶ℂ)
3534anbi1i 624 . . . 4 ((𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3624, 31, 353bitr4i 302 . . 3 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3736eqabi 2868 . 2 (𝐽 Cn 𝐾) = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
381, 2, 373eqtr4i 2769 1 ContFn = (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2708  wral 3060  wrex 3069  {crab 3405   class class class wbr 5110  ccom 5642  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772  cc 11058   < clt 11198  cmin 11394  +crp 12924  abscabs 15131  TopOpenctopn 17317  ∞Metcxmet 20818  MetOpencmopn 20823  fldccnfld 20833   Cn ccn 22612  chba 29924  normcno 29928   cmv 29930  ContFnccnfn 29958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140  ax-hilex 30004  ax-hfvadd 30005  ax-hvcom 30006  ax-hvass 30007  ax-hv0cl 30008  ax-hvaddid 30009  ax-hfvmul 30010  ax-hvmulid 30011  ax-hvmulass 30012  ax-hvdistr1 30013  ax-hvdistr2 30014  ax-hvmul0 30015  ax-hfi 30084  ax-his1 30087  ax-his2 30088  ax-his3 30089  ax-his4 30090
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-fz 13435  df-seq 13917  df-exp 13978  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-struct 17030  df-slot 17065  df-ndx 17077  df-base 17095  df-plusg 17160  df-mulr 17161  df-starv 17162  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-rest 17318  df-topn 17319  df-topgen 17339  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-cnfld 20834  df-top 22280  df-topon 22297  df-bases 22333  df-cn 22615  df-cnp 22616  df-grpo 29498  df-gid 29499  df-ginv 29500  df-gdiv 29501  df-ablo 29550  df-vc 29564  df-nv 29597  df-va 29600  df-ba 29601  df-sm 29602  df-0v 29603  df-vs 29604  df-nmcv 29605  df-ims 29606  df-hnorm 29973  df-hvsub 29976  df-cnfn 30852
This theorem is referenced by:  nlelchi  31066
  Copyright terms: Public domain W3C validator