| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 3437 |
. 2
⊢ {𝑡 ∈ (ℂ
↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ)
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))} |
| 2 | | df-cnfn 31866 |
. 2
⊢ ContFn =
{𝑡 ∈ (ℂ
↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} |
| 3 | | hhcn.1 |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (normℎ
∘ −ℎ ) |
| 4 | 3 | hilmetdval 31215 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (normℎ‘(𝑥 −ℎ
𝑤))) |
| 5 | | normsub 31162 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) →
(normℎ‘(𝑥 −ℎ 𝑤)) =
(normℎ‘(𝑤 −ℎ 𝑥))) |
| 6 | 4, 5 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (normℎ‘(𝑤 −ℎ
𝑥))) |
| 7 | 6 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) ∧
𝑤 ∈ ℋ) →
(𝑥𝐷𝑤) = (normℎ‘(𝑤 −ℎ
𝑥))) |
| 8 | 7 | breq1d 5153 |
. . . . . . . . . 10
⊢ (((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) ∧
𝑤 ∈ ℋ) →
((𝑥𝐷𝑤) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ
𝑥)) < 𝑧)) |
| 9 | | ffvelcdm 7101 |
. . . . . . . . . . . . . 14
⊢ ((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) →
(𝑡‘𝑥) ∈ ℂ) |
| 10 | | ffvelcdm 7101 |
. . . . . . . . . . . . . 14
⊢ ((𝑡: ℋ⟶ℂ ∧
𝑤 ∈ ℋ) →
(𝑡‘𝑤) ∈ ℂ) |
| 11 | 9, 10 | anim12dan 619 |
. . . . . . . . . . . . 13
⊢ ((𝑡: ℋ⟶ℂ ∧
(𝑥 ∈ ℋ ∧
𝑤 ∈ ℋ)) →
((𝑡‘𝑥) ∈ ℂ ∧ (𝑡‘𝑤) ∈ ℂ)) |
| 12 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 13 | 12 | cnmetdval 24791 |
. . . . . . . . . . . . . 14
⊢ (((𝑡‘𝑥) ∈ ℂ ∧ (𝑡‘𝑤) ∈ ℂ) → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) = (abs‘((𝑡‘𝑥) − (𝑡‘𝑤)))) |
| 14 | | abssub 15365 |
. . . . . . . . . . . . . 14
⊢ (((𝑡‘𝑥) ∈ ℂ ∧ (𝑡‘𝑤) ∈ ℂ) → (abs‘((𝑡‘𝑥) − (𝑡‘𝑤))) = (abs‘((𝑡‘𝑤) − (𝑡‘𝑥)))) |
| 15 | 13, 14 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (((𝑡‘𝑥) ∈ ℂ ∧ (𝑡‘𝑤) ∈ ℂ) → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) = (abs‘((𝑡‘𝑤) − (𝑡‘𝑥)))) |
| 16 | 11, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑡: ℋ⟶ℂ ∧
(𝑥 ∈ ℋ ∧
𝑤 ∈ ℋ)) →
((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) = (abs‘((𝑡‘𝑤) − (𝑡‘𝑥)))) |
| 17 | 16 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) ∧
𝑤 ∈ ℋ) →
((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) = (abs‘((𝑡‘𝑤) − (𝑡‘𝑥)))) |
| 18 | 17 | breq1d 5153 |
. . . . . . . . . 10
⊢ (((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) ∧
𝑤 ∈ ℋ) →
(((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦 ↔ (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)) |
| 19 | 8, 18 | imbi12d 344 |
. . . . . . . . 9
⊢ (((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) ∧
𝑤 ∈ ℋ) →
(((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦) ↔
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 20 | 19 | ralbidva 3176 |
. . . . . . . 8
⊢ ((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) →
(∀𝑤 ∈ ℋ
((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 21 | 20 | rexbidv 3179 |
. . . . . . 7
⊢ ((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) →
(∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 22 | 21 | ralbidv 3178 |
. . . . . 6
⊢ ((𝑡: ℋ⟶ℂ ∧
𝑥 ∈ ℋ) →
(∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 23 | 22 | ralbidva 3176 |
. . . . 5
⊢ (𝑡: ℋ⟶ℂ →
(∀𝑥 ∈ ℋ
∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 24 | 23 | pm5.32i 574 |
. . . 4
⊢ ((𝑡: ℋ⟶ℂ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 25 | 3 | hilxmet 31214 |
. . . . 5
⊢ 𝐷 ∈ (∞Met‘
ℋ) |
| 26 | | cnxmet 24793 |
. . . . 5
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 27 | | hhcn.2 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
| 28 | | hhcn.4 |
. . . . . . 7
⊢ 𝐾 =
(TopOpen‘ℂfld) |
| 29 | 28 | cnfldtopn 24802 |
. . . . . 6
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
| 30 | 27, 29 | metcn 24556 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘
ℋ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) →
(𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦)))) |
| 31 | 25, 26, 30 | mp2an 692 |
. . . 4
⊢ (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡‘𝑥)(abs ∘ − )(𝑡‘𝑤)) < 𝑦))) |
| 32 | | cnex 11236 |
. . . . . 6
⊢ ℂ
∈ V |
| 33 | | ax-hilex 31018 |
. . . . . 6
⊢ ℋ
∈ V |
| 34 | 32, 33 | elmap 8911 |
. . . . 5
⊢ (𝑡 ∈ (ℂ
↑m ℋ) ↔ 𝑡: ℋ⟶ℂ) |
| 35 | 34 | anbi1i 624 |
. . . 4
⊢ ((𝑡 ∈ (ℂ
↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 36 | 24, 31, 35 | 3bitr4i 303 |
. . 3
⊢ (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡 ∈ (ℂ ↑m ℋ)
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))) |
| 37 | 36 | eqabi 2877 |
. 2
⊢ (𝐽 Cn 𝐾) = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ)
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦))} |
| 38 | 1, 2, 37 | 3eqtr4i 2775 |
1
⊢ ContFn =
(𝐽 Cn 𝐾) |