HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcnf Structured version   Visualization version   GIF version

Theorem hhcnf 31735
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
hhcn.4 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
hhcnf ContFn = (𝐽 Cn 𝐾)

Proof of Theorem hhcnf
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3431 . 2 {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnfn 31677 . 2 ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 31026 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 30973 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2768 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 712 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 5162 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelcdm 7096 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℂ)
10 ffvelcdm 7096 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℂ)
119, 10anim12dan 617 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ))
12 eqid 2728 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1312cnmetdval 24707 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑥) − (𝑡𝑤))))
14 abssub 15313 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → (abs‘((𝑡𝑥) − (𝑡𝑤))) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1513, 14eqtrd 2768 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1611, 15syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1716anassrs 466 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1817breq1d 5162 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦 ↔ (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
198, 18imbi12d 343 . . . . . . . . 9 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019ralbidva 3173 . . . . . . . 8 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120rexbidv 3176 . . . . . . 7 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidv 3175 . . . . . 6 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322ralbidva 3173 . . . . 5 (𝑡: ℋ⟶ℂ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2423pm5.32i 573 . . . 4 ((𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
253hilxmet 31025 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
26 cnxmet 24709 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
27 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
28 hhcn.4 . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
2928cnfldtopn 24718 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
3027, 29metcn 24472 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦))))
3125, 26, 30mp2an 690 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)))
32 cnex 11227 . . . . . 6 ℂ ∈ V
33 ax-hilex 30829 . . . . . 6 ℋ ∈ V
3432, 33elmap 8896 . . . . 5 (𝑡 ∈ (ℂ ↑m ℋ) ↔ 𝑡: ℋ⟶ℂ)
3534anbi1i 622 . . . 4 ((𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3624, 31, 353bitr4i 302 . . 3 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3736eqabi 2865 . 2 (𝐽 Cn 𝐾) = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
381, 2, 373eqtr4i 2766 1 ContFn = (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2705  wral 3058  wrex 3067  {crab 3430   class class class wbr 5152  ccom 5686  wf 6549  cfv 6553  (class class class)co 7426  m cmap 8851  cc 11144   < clt 11286  cmin 11482  +crp 13014  abscabs 15221  TopOpenctopn 17410  ∞Metcxmet 21271  MetOpencmopn 21276  fldccnfld 21286   Cn ccn 23148  chba 30749  normcno 30753   cmv 30755  ContFnccnfn 30783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226  ax-hilex 30829  ax-hfvadd 30830  ax-hvcom 30831  ax-hvass 30832  ax-hv0cl 30833  ax-hvaddid 30834  ax-hfvmul 30835  ax-hvmulid 30836  ax-hvmulass 30837  ax-hvdistr1 30838  ax-hvdistr2 30839  ax-hvmul0 30840  ax-hfi 30909  ax-his1 30912  ax-his2 30913  ax-his3 30914  ax-his4 30915
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-fz 13525  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-starv 17255  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-rest 17411  df-topn 17412  df-topgen 17432  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22816  df-topon 22833  df-bases 22869  df-cn 23151  df-cnp 23152  df-grpo 30323  df-gid 30324  df-ginv 30325  df-gdiv 30326  df-ablo 30375  df-vc 30389  df-nv 30422  df-va 30425  df-ba 30426  df-sm 30427  df-0v 30428  df-vs 30429  df-nmcv 30430  df-ims 30431  df-hnorm 30798  df-hvsub 30801  df-cnfn 31677
This theorem is referenced by:  nlelchi  31891
  Copyright terms: Public domain W3C validator