HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcnf Structured version   Visualization version   GIF version

Theorem hhcnf 29676
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
hhcn.4 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
hhcnf ContFn = (𝐽 Cn 𝐾)

Proof of Theorem hhcnf
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3147 . 2 {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnfn 29618 . 2 ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 28967 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 28914 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2856 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 712 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 5069 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelrn 6844 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℂ)
10 ffvelrn 6844 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℂ)
119, 10anim12dan 620 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ))
12 eqid 2821 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1312cnmetdval 23373 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑥) − (𝑡𝑤))))
14 abssub 14680 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → (abs‘((𝑡𝑥) − (𝑡𝑤))) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1513, 14eqtrd 2856 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1611, 15syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1716anassrs 470 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1817breq1d 5069 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦 ↔ (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
198, 18imbi12d 347 . . . . . . . . 9 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019ralbidva 3196 . . . . . . . 8 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120rexbidv 3297 . . . . . . 7 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidv 3197 . . . . . 6 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322ralbidva 3196 . . . . 5 (𝑡: ℋ⟶ℂ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2423pm5.32i 577 . . . 4 ((𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
253hilxmet 28966 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
26 cnxmet 23375 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
27 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
28 hhcn.4 . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
2928cnfldtopn 23384 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
3027, 29metcn 23147 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦))))
3125, 26, 30mp2an 690 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)))
32 cnex 10612 . . . . . 6 ℂ ∈ V
33 ax-hilex 28770 . . . . . 6 ℋ ∈ V
3432, 33elmap 8429 . . . . 5 (𝑡 ∈ (ℂ ↑m ℋ) ↔ 𝑡: ℋ⟶ℂ)
3534anbi1i 625 . . . 4 ((𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3624, 31, 353bitr4i 305 . . 3 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3736abbi2i 2953 . 2 (𝐽 Cn 𝐾) = {𝑡 ∣ (𝑡 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
381, 2, 373eqtr4i 2854 1 ContFn = (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  {crab 3142   class class class wbr 5059  ccom 5554  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400  cc 10529   < clt 10669  cmin 10864  +crp 12383  abscabs 14587  TopOpenctopn 16689  ∞Metcxmet 20524  MetOpencmopn 20529  fldccnfld 20539   Cn ccn 21826  chba 28690  normcno 28694   cmv 28696  ContFnccnfn 28724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611  ax-hilex 28770  ax-hfvadd 28771  ax-hvcom 28772  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvmulass 28778  ax-hvdistr1 28779  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855  ax-his4 28856
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-bases 21548  df-cn 21829  df-cnp 21830  df-grpo 28264  df-gid 28265  df-ginv 28266  df-gdiv 28267  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-vs 28370  df-nmcv 28371  df-ims 28372  df-hnorm 28739  df-hvsub 28742  df-cnfn 29618
This theorem is referenced by:  nlelchi  29832
  Copyright terms: Public domain W3C validator