| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldmqs | Structured version Visualization version GIF version | ||
| Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| eqvreldmqs | ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coeleqvrel 38526 | . . 3 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ( EqvRel ≀ (◡ E ↾ 𝐴) ↔ CoElEqvRel 𝐴) |
| 3 | dmqs1cosscnvepreseq 38601 | . 2 ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
| 4 | 2, 3 | anbi12i 628 | 1 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∪ cuni 4880 E cep 5549 ◡ccnv 5650 dom cdm 5651 ↾ cres 5653 / cqs 8712 ≀ ccoss 38120 ∼ ccoels 38121 EqvRel weqvrel 38137 CoElEqvRel wcoeleqvrel 38139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-ec 8715 df-qs 8719 df-coss 38350 df-coels 38351 df-coeleqvrel 38526 |
| This theorem is referenced by: mpet3 38775 |
| Copyright terms: Public domain | W3C validator |