Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldmqs Structured version   Visualization version   GIF version

Theorem eqvreldmqs 38640
Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.)
Assertion
Ref Expression
eqvreldmqs (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem eqvreldmqs
StepHypRef Expression
1 df-coeleqvrel 38551 . . 3 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
21bicomi 224 . 2 ( EqvRel ≀ ( E ↾ 𝐴) ↔ CoElEqvRel 𝐴)
3 dmqs1cosscnvepreseq 38627 . 2 ((dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
42, 3anbi12i 628 1 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   cuni 4867   E cep 5530  ccnv 5630  dom cdm 5631  cres 5633   / cqs 8647  ccoss 38142  ccoels 38143   EqvRel weqvrel 38159   CoElEqvRel wcoeleqvrel 38161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654  df-coss 38375  df-coels 38376  df-coeleqvrel 38551
This theorem is referenced by:  mpet3  38801
  Copyright terms: Public domain W3C validator