![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjim | Structured version Visualization version GIF version |
Description: If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38837). Special case of disjim 38739. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eldisjim | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjim 38739 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → EqvRel ≀ (◡ E ↾ 𝐴)) | |
2 | df-eldisj 38665 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
3 | df-coeleqvrel 38545 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 E cep 5598 ◡ccnv 5699 ↾ cres 5702 ≀ ccoss 38137 EqvRel weqvrel 38154 CoElEqvRel wcoeleqvrel 38156 Disj wdisjALTV 38171 ElDisj weldisj 38173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-coss 38369 df-refrel 38470 df-cnvrefrel 38485 df-symrel 38502 df-trrel 38532 df-eqvrel 38543 df-coeleqvrel 38545 df-disjALTV 38663 df-eldisj 38665 |
This theorem is referenced by: mainer 38792 mainer2 38804 |
Copyright terms: Public domain | W3C validator |