Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjim Structured version   Visualization version   GIF version

Theorem eldisjim 38769
Description: If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38865). Special case of disjim 38766. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eldisjim ( ElDisj 𝐴 → CoElEqvRel 𝐴)

Proof of Theorem eldisjim
StepHypRef Expression
1 disjim 38766 . 2 ( Disj ( E ↾ 𝐴) → EqvRel ≀ ( E ↾ 𝐴))
2 df-eldisj 38692 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
3 df-coeleqvrel 38571 . 2 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
41, 2, 33imtr4i 292 1 ( ElDisj 𝐴 → CoElEqvRel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5530  ccnv 5630  cres 5633  ccoss 38162   EqvRel weqvrel 38179   CoElEqvRel wcoeleqvrel 38181   Disj wdisjALTV 38196   ElDisj weldisj 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-coss 38395  df-refrel 38496  df-cnvrefrel 38511  df-symrel 38528  df-trrel 38558  df-eqvrel 38569  df-coeleqvrel 38571  df-disjALTV 38690  df-eldisj 38692
This theorem is referenced by:  mainer  38819  mainer2  38831
  Copyright terms: Public domain W3C validator