![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjim | Structured version Visualization version GIF version |
Description: If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38875). Special case of disjim 38777. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eldisjim | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjim 38777 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → EqvRel ≀ (◡ E ↾ 𝐴)) | |
2 | df-eldisj 38703 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
3 | df-coeleqvrel 38583 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 E cep 5592 ◡ccnv 5692 ↾ cres 5695 ≀ ccoss 38176 EqvRel weqvrel 38193 CoElEqvRel wcoeleqvrel 38195 Disj wdisjALTV 38210 ElDisj weldisj 38212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-coss 38407 df-refrel 38508 df-cnvrefrel 38523 df-symrel 38540 df-trrel 38570 df-eqvrel 38581 df-coeleqvrel 38583 df-disjALTV 38701 df-eldisj 38703 |
This theorem is referenced by: mainer 38830 mainer2 38842 |
Copyright terms: Public domain | W3C validator |