Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjim Structured version   Visualization version   GIF version

Theorem eldisjim 38888
Description: If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38984). Special case of disjim 38885. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eldisjim ( ElDisj 𝐴 → CoElEqvRel 𝐴)

Proof of Theorem eldisjim
StepHypRef Expression
1 disjim 38885 . 2 ( Disj ( E ↾ 𝐴) → EqvRel ≀ ( E ↾ 𝐴))
2 df-eldisj 38811 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
3 df-coeleqvrel 38689 . 2 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
41, 2, 33imtr4i 292 1 ( ElDisj 𝐴 → CoElEqvRel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5518  ccnv 5618  cres 5621  ccoss 38228   EqvRel weqvrel 38245   CoElEqvRel wcoeleqvrel 38247   Disj wdisjALTV 38262   ElDisj weldisj 38264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-coss 38519  df-refrel 38610  df-cnvrefrel 38625  df-symrel 38642  df-trrel 38676  df-eqvrel 38687  df-coeleqvrel 38689  df-disjALTV 38809  df-eldisj 38811
This theorem is referenced by:  mainer  38938  mainer2  38950
  Copyright terms: Public domain W3C validator