| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjim | Structured version Visualization version GIF version | ||
| Description: If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38864). Special case of disjim 38766. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjim | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim 38766 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → EqvRel ≀ (◡ E ↾ 𝐴)) | |
| 2 | df-eldisj 38692 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 3 | df-coeleqvrel 38572 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
| 4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 E cep 5545 ◡ccnv 5645 ↾ cres 5648 ≀ ccoss 38166 EqvRel weqvrel 38183 CoElEqvRel wcoeleqvrel 38185 Disj wdisjALTV 38200 ElDisj weldisj 38202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-coss 38396 df-refrel 38497 df-cnvrefrel 38512 df-symrel 38529 df-trrel 38559 df-eqvrel 38570 df-coeleqvrel 38572 df-disjALTV 38690 df-eldisj 38692 |
| This theorem is referenced by: mainer 38819 mainer2 38831 |
| Copyright terms: Public domain | W3C validator |