Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrel Structured version   Visualization version   GIF version

Theorem disjrel 38686
Description: Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.)
Assertion
Ref Expression
disjrel ( Disj 𝑅 → Rel 𝑅)

Proof of Theorem disjrel
StepHypRef Expression
1 df-disjALTV 38661 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
21simprbi 496 1 ( Disj 𝑅 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 5699  Rel wrel 5705  ccoss 38135   CnvRefRel wcnvrefrel 38144   Disj wdisjALTV 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-disjALTV 38661
This theorem is referenced by:  disjlem18  38756  disjdmqsss  38758  disjdmqscossss  38759
  Copyright terms: Public domain W3C validator