|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrel | Structured version Visualization version GIF version | ||
| Description: Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| disjrel | ⊢ ( Disj 𝑅 → Rel 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-disjALTV 38707 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ ( Disj 𝑅 → Rel 𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ◡ccnv 5683 Rel wrel 5689 ≀ ccoss 38183 CnvRefRel wcnvrefrel 38192 Disj wdisjALTV 38217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-disjALTV 38707 | 
| This theorem is referenced by: disjlem18 38802 disjdmqsss 38804 disjdmqscossss 38805 | 
| Copyright terms: Public domain | W3C validator |