| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrel | Structured version Visualization version GIF version | ||
| Description: Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjrel | ⊢ ( Disj 𝑅 → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjALTV 38728 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ ( Disj 𝑅 → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ◡ccnv 5658 Rel wrel 5664 ≀ ccoss 38204 CnvRefRel wcnvrefrel 38213 Disj wdisjALTV 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-disjALTV 38728 |
| This theorem is referenced by: disjlem18 38823 disjdmqsss 38825 disjdmqscossss 38826 |
| Copyright terms: Public domain | W3C validator |