| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38706. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjALTV 38723 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | cnvrefrelcoss2 38555 | . . 3 ⊢ ( CnvRefRel ≀ ◡𝑅 ↔ ≀ ◡𝑅 ⊆ I ) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3926 I cid 5547 ◡ccnv 5653 Rel wrel 5659 ≀ ccoss 38199 CnvRefRel wcnvrefrel 38208 Disj wdisjALTV 38233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-coss 38429 df-cnvrefrel 38545 df-disjALTV 38723 |
| This theorem is referenced by: dfdisjALTV3 38733 dfdisjALTV4 38734 dfdisjALTV5 38735 dfeldisj2 38736 disjxrn 38764 disjorimxrn 38766 disjALTVid 38773 |
| Copyright terms: Public domain | W3C validator |