![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV2 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38670. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjALTV 38687 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
2 | cnvrefrelcoss2 38519 | . . 3 ⊢ ( CnvRefRel ≀ ◡𝑅 ↔ ≀ ◡𝑅 ⊆ I ) | |
3 | 2 | anbi1i 624 | . 2 ⊢ (( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 275 | 1 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3963 I cid 5582 ◡ccnv 5688 Rel wrel 5694 ≀ ccoss 38162 CnvRefRel wcnvrefrel 38171 Disj wdisjALTV 38196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-coss 38393 df-cnvrefrel 38509 df-disjALTV 38687 |
This theorem is referenced by: dfdisjALTV3 38697 dfdisjALTV4 38698 dfdisjALTV5 38699 dfeldisj2 38700 disjxrn 38728 disjorimxrn 38730 disjALTVid 38737 |
Copyright terms: Public domain | W3C validator |