| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38687. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjALTV 38704 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | cnvrefrelcoss2 38535 | . . 3 ⊢ ( CnvRefRel ≀ ◡𝑅 ↔ ≀ ◡𝑅 ⊆ I ) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3917 I cid 5535 ◡ccnv 5640 Rel wrel 5646 ≀ ccoss 38176 CnvRefRel wcnvrefrel 38185 Disj wdisjALTV 38210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-coss 38409 df-cnvrefrel 38525 df-disjALTV 38704 |
| This theorem is referenced by: dfdisjALTV3 38714 dfdisjALTV4 38715 dfdisjALTV5 38716 dfeldisj2 38717 disjxrn 38745 disjorimxrn 38747 disjALTVid 38754 |
| Copyright terms: Public domain | W3C validator |