| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38796. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disjALTV 38813 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
| 2 | cnvrefrelcoss2 38639 | . . 3 ⊢ ( CnvRefRel ≀ ◡𝑅 ↔ ≀ ◡𝑅 ⊆ I ) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3897 I cid 5508 ◡ccnv 5613 Rel wrel 5619 ≀ ccoss 38232 CnvRefRel wcnvrefrel 38241 Disj wdisjALTV 38266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-coss 38523 df-cnvrefrel 38629 df-disjALTV 38813 |
| This theorem is referenced by: dfdisjALTV3 38823 dfdisjALTV4 38824 dfdisjALTV5 38825 dfeldisj2 38826 disjxrn 38854 disjorimxrn 38856 disjALTVid 38863 |
| Copyright terms: Public domain | W3C validator |