![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-exp | Structured version Visualization version GIF version |
Description: Define exponentiation of
complex numbers with integer exponents. For
example, (5↑2) = 25 (ex-exp 29394). Terminology: In general,
"exponentiation" is the operation of raising a
"base" 𝑥 to the power
of the "exponent" 𝑦, resulting in the "power"
(𝑥↑𝑦), also
called "x to the power of y". In this case, "integer
exponentiation" is
the operation of raising a complex "base" 𝑥 to the
power of an
integer 𝑦, resulting in the "integer
power" (𝑥↑𝑦).
This definition is not meant to be used directly; instead, exp0 13971 and expp1 13974 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we do not have superscripts. 10-Jun-2005: The definition was extended from positive exponents to nonegative exponent, so that 0↑0 = 1, following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 13972). 4-Jun-2014: The definition was extended to integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 29394). The case 𝑥 = 0, 𝑦 < 0 gives the "value" (1 / 0); relying on this should be avoided in applications. For a definition of exponentiation including complex exponents see df-cxp 25913 (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz 26022. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.) |
Ref | Expression |
---|---|
df-exp | ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cexp 13967 | . 2 class ↑ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 11049 | . . 3 class ℂ | |
5 | cz 12499 | . . 3 class ℤ | |
6 | 3 | cv 1540 | . . . . 5 class 𝑦 |
7 | cc0 11051 | . . . . 5 class 0 | |
8 | 6, 7 | wceq 1541 | . . . 4 wff 𝑦 = 0 |
9 | c1 11052 | . . . 4 class 1 | |
10 | clt 11189 | . . . . . 6 class < | |
11 | 7, 6, 10 | wbr 5105 | . . . . 5 wff 0 < 𝑦 |
12 | cmul 11056 | . . . . . . 7 class · | |
13 | cn 12153 | . . . . . . . 8 class ℕ | |
14 | 2 | cv 1540 | . . . . . . . . 9 class 𝑥 |
15 | 14 | csn 4586 | . . . . . . . 8 class {𝑥} |
16 | 13, 15 | cxp 5631 | . . . . . . 7 class (ℕ × {𝑥}) |
17 | 12, 16, 9 | cseq 13906 | . . . . . 6 class seq1( · , (ℕ × {𝑥})) |
18 | 6, 17 | cfv 6496 | . . . . 5 class (seq1( · , (ℕ × {𝑥}))‘𝑦) |
19 | 6 | cneg 11386 | . . . . . . 7 class -𝑦 |
20 | 19, 17 | cfv 6496 | . . . . . 6 class (seq1( · , (ℕ × {𝑥}))‘-𝑦) |
21 | cdiv 11812 | . . . . . 6 class / | |
22 | 9, 20, 21 | co 7357 | . . . . 5 class (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) |
23 | 11, 18, 22 | cif 4486 | . . . 4 class if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) |
24 | 8, 9, 23 | cif 4486 | . . 3 class if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) |
25 | 2, 3, 4, 5, 24 | cmpo 7359 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) |
26 | 1, 25 | wceq 1541 | 1 wff ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) |
Colors of variables: wff setvar class |
This definition is referenced by: expval 13969 |
Copyright terms: Public domain | W3C validator |