![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version |
Description: Example for df-exp 13884. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12140 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7347 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 12159 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 14035 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 12351 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 12353 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 12220 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 14017 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 12171 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 12149 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 12653 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 11085 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2764 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 12242 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 11085 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 7349 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 12350 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 12355 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 12357 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2736 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 12199 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 12165 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 12622 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 11268 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12599 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2764 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 12569 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2764 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2764 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 12155 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 11390 | . . . 4 ⊢ -3 ∈ ℂ |
33 | expneg 13891 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
34 | 32, 6, 33 | mp2an 689 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
35 | sqneg 13937 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
37 | sq3 14016 | . . . . 5 ⊢ (3↑2) = 9 | |
38 | 36, 37 | eqtri 2764 | . . . 4 ⊢ (-3↑2) = 9 |
39 | 38 | oveq2i 7348 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
40 | 34, 39 | eqtri 2764 | . 2 ⊢ (-3↑-2) = (1 / 9) |
41 | 30, 40 | pm3.2i 471 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7337 ℂcc 10970 1c1 10973 + caddc 10975 · cmul 10977 -cneg 11307 / cdiv 11733 2c2 12129 3c3 12130 4c4 12131 5c5 12132 6c6 12133 8c8 12135 9c9 12136 ℕ0cn0 12334 ;cdc 12538 ↑cexp 13883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-seq 13823 df-exp 13884 |
This theorem is referenced by: ex-sqrt 29106 |
Copyright terms: Public domain | W3C validator |