Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version |
Description: Example for df-exp 13636. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11896 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7223 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 11915 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 13786 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 12107 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 12109 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 11976 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 13768 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 11927 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 11905 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 12408 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 10842 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2765 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 11998 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 10842 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 7225 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 12106 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 12111 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 12113 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2737 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 11955 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 11921 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 12377 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 11024 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12354 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2765 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 12324 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2765 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2765 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 11911 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 11146 | . . . 4 ⊢ -3 ∈ ℂ |
33 | expneg 13643 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
34 | 32, 6, 33 | mp2an 692 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
35 | sqneg 13688 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
37 | sq3 13767 | . . . . 5 ⊢ (3↑2) = 9 | |
38 | 36, 37 | eqtri 2765 | . . . 4 ⊢ (-3↑2) = 9 |
39 | 38 | oveq2i 7224 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
40 | 34, 39 | eqtri 2765 | . 2 ⊢ (-3↑-2) = (1 / 9) |
41 | 30, 40 | pm3.2i 474 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 (class class class)co 7213 ℂcc 10727 1c1 10730 + caddc 10732 · cmul 10734 -cneg 11063 / cdiv 11489 2c2 11885 3c3 11886 4c4 11887 5c5 11888 6c6 11889 8c8 11891 9c9 11892 ℕ0cn0 12090 ;cdc 12293 ↑cexp 13635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-seq 13575 df-exp 13636 |
This theorem is referenced by: ex-sqrt 28537 |
Copyright terms: Public domain | W3C validator |