| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version | ||
| Description: Example for df-exp 13971. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12198 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 7362 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 12217 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | binom21 14128 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2nn0 12405 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 12407 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 12273 | . . . . 5 ⊢ (4 + 1) = 5 | |
| 9 | sq4e2t8 14108 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 10 | 8cn 12229 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 11 | 2cn 12207 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 12709 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
| 13 | 10, 11, 12 | mulcomli 11128 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
| 14 | 9, 13 | eqtri 2756 | . . . . . . 7 ⊢ (4↑2) = ;16 |
| 15 | 4t2e8 12295 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 3, 11, 15 | mulcomli 11128 | . . . . . . 7 ⊢ (2 · 4) = 8 |
| 17 | 14, 16 | oveq12i 7364 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
| 18 | 1nn0 12404 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 12409 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 12411 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 21 | eqid 2733 | . . . . . . 7 ⊢ ;16 = ;16 | |
| 22 | 1p1e2 12252 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 23 | 6cn 12223 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 12678 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
| 25 | 10, 23, 24 | addcomli 11312 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
| 26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12655 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
| 27 | 17, 26 | eqtri 2756 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
| 28 | 6, 7, 8, 27 | decsuc 12625 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
| 29 | 5, 28 | eqtri 2756 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
| 30 | 2, 29 | eqtri 2756 | . 2 ⊢ (5↑2) = ;25 |
| 31 | 3cn 12213 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli 11436 | . . . 4 ⊢ -3 ∈ ℂ |
| 33 | expneg 13978 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
| 34 | 32, 6, 33 | mp2an 692 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
| 35 | sqneg 14024 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
| 36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
| 37 | sq3 14107 | . . . . 5 ⊢ (3↑2) = 9 | |
| 38 | 36, 37 | eqtri 2756 | . . . 4 ⊢ (-3↑2) = 9 |
| 39 | 38 | oveq2i 7363 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
| 40 | 34, 39 | eqtri 2756 | . 2 ⊢ (-3↑-2) = (1 / 9) |
| 41 | 30, 40 | pm3.2i 470 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 + caddc 11016 · cmul 11018 -cneg 11352 / cdiv 11781 2c2 12187 3c3 12188 4c4 12189 5c5 12190 6c6 12191 8c8 12193 9c9 12194 ℕ0cn0 12388 ;cdc 12594 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: ex-sqrt 30436 |
| Copyright terms: Public domain | W3C validator |