![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version |
Description: Example for df-exp 13284. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11557 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7033 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 11576 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 13434 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 11768 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 11770 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 11637 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 13416 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 11588 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 11566 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 12067 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 10503 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2821 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 11659 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 10503 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 7035 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 11767 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 11772 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 11774 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2797 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 11616 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 11582 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 12036 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 10685 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12013 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2821 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 11983 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2821 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2821 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 11572 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 10808 | . . . 4 ⊢ -3 ∈ ℂ |
33 | expneg 13291 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
34 | 32, 6, 33 | mp2an 688 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
35 | sqneg 13336 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
37 | sq3 13415 | . . . . 5 ⊢ (3↑2) = 9 | |
38 | 36, 37 | eqtri 2821 | . . . 4 ⊢ (-3↑2) = 9 |
39 | 38 | oveq2i 7034 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
40 | 34, 39 | eqtri 2821 | . 2 ⊢ (-3↑-2) = (1 / 9) |
41 | 30, 40 | pm3.2i 471 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1525 ∈ wcel 2083 (class class class)co 7023 ℂcc 10388 1c1 10391 + caddc 10393 · cmul 10395 -cneg 10724 / cdiv 11151 2c2 11546 3c3 11547 4c4 11548 5c5 11549 6c6 11550 8c8 11552 9c9 11553 ℕ0cn0 11751 ;cdc 11952 ↑cexp 13283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-seq 13224 df-exp 13284 |
This theorem is referenced by: ex-sqrt 27921 |
Copyright terms: Public domain | W3C validator |