Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version |
Description: Example for df-exp 13711. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11969 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7265 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 11988 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 13862 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 12180 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 12182 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 12049 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 13844 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 12000 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 11978 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 12481 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 10915 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2766 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 12071 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 10915 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 7267 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 12179 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 12184 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 12186 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2738 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 12028 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 11994 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 12450 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 11097 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12427 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2766 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 12397 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2766 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2766 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 11984 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 11219 | . . . 4 ⊢ -3 ∈ ℂ |
33 | expneg 13718 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
34 | 32, 6, 33 | mp2an 688 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
35 | sqneg 13764 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
37 | sq3 13843 | . . . . 5 ⊢ (3↑2) = 9 | |
38 | 36, 37 | eqtri 2766 | . . . 4 ⊢ (-3↑2) = 9 |
39 | 38 | oveq2i 7266 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
40 | 34, 39 | eqtri 2766 | . 2 ⊢ (-3↑-2) = (1 / 9) |
41 | 30, 40 | pm3.2i 470 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 -cneg 11136 / cdiv 11562 2c2 11958 3c3 11959 4c4 11960 5c5 11961 6c6 11962 8c8 11964 9c9 11965 ℕ0cn0 12163 ;cdc 12366 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: ex-sqrt 28719 |
Copyright terms: Public domain | W3C validator |