![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version |
Description: Example for df-exp 14028. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12278 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7419 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 12297 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 14182 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 12489 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 12491 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 12358 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 14163 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 12309 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 12287 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 12792 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 11223 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2761 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 12380 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 11223 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 7421 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 12488 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 12493 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 12495 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2733 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 12337 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 12303 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 12761 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 11406 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12738 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2761 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 12708 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2761 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2761 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 12293 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 11528 | . . . 4 ⊢ -3 ∈ ℂ |
33 | expneg 14035 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
34 | 32, 6, 33 | mp2an 691 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
35 | sqneg 14081 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
37 | sq3 14162 | . . . . 5 ⊢ (3↑2) = 9 | |
38 | 36, 37 | eqtri 2761 | . . . 4 ⊢ (-3↑2) = 9 |
39 | 38 | oveq2i 7420 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
40 | 34, 39 | eqtri 2761 | . 2 ⊢ (-3↑-2) = (1 / 9) |
41 | 30, 40 | pm3.2i 472 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 · cmul 11115 -cneg 11445 / cdiv 11871 2c2 12267 3c3 12268 4c4 12269 5c5 12270 6c6 12271 8c8 12273 9c9 12274 ℕ0cn0 12472 ;cdc 12677 ↑cexp 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-seq 13967 df-exp 14028 |
This theorem is referenced by: ex-sqrt 29738 |
Copyright terms: Public domain | W3C validator |