![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version |
Description: Example for df-exp 14100. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12330 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7441 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 12349 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 14255 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 12541 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 12543 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 12410 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 14235 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 12361 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 12339 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 12846 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 11268 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2763 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 12432 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 11268 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 7443 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 12545 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 12547 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2735 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 12389 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 12355 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 12815 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 11451 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12792 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2763 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 12762 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2763 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2763 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 12345 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 11575 | . . . 4 ⊢ -3 ∈ ℂ |
33 | expneg 14107 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
34 | 32, 6, 33 | mp2an 692 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
35 | sqneg 14153 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
37 | sq3 14234 | . . . . 5 ⊢ (3↑2) = 9 | |
38 | 36, 37 | eqtri 2763 | . . . 4 ⊢ (-3↑2) = 9 |
39 | 38 | oveq2i 7442 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
40 | 34, 39 | eqtri 2763 | . 2 ⊢ (-3↑-2) = (1 / 9) |
41 | 30, 40 | pm3.2i 470 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 -cneg 11491 / cdiv 11918 2c2 12319 3c3 12320 4c4 12321 5c5 12322 6c6 12323 8c8 12325 9c9 12326 ℕ0cn0 12524 ;cdc 12731 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: ex-sqrt 30483 |
Copyright terms: Public domain | W3C validator |