| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version | ||
| Description: Example for df-exp 14034. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12259 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 7400 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 12278 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | binom21 14191 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2nn0 12466 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 12468 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 12334 | . . . . 5 ⊢ (4 + 1) = 5 | |
| 9 | sq4e2t8 14171 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 10 | 8cn 12290 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 11 | 2cn 12268 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 12771 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
| 13 | 10, 11, 12 | mulcomli 11190 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
| 14 | 9, 13 | eqtri 2753 | . . . . . . 7 ⊢ (4↑2) = ;16 |
| 15 | 4t2e8 12356 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 3, 11, 15 | mulcomli 11190 | . . . . . . 7 ⊢ (2 · 4) = 8 |
| 17 | 14, 16 | oveq12i 7402 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
| 18 | 1nn0 12465 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 12470 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 12472 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ ;16 = ;16 | |
| 22 | 1p1e2 12313 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 23 | 6cn 12284 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 12740 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
| 25 | 10, 23, 24 | addcomli 11373 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
| 26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12717 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
| 27 | 17, 26 | eqtri 2753 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
| 28 | 6, 7, 8, 27 | decsuc 12687 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
| 29 | 5, 28 | eqtri 2753 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
| 30 | 2, 29 | eqtri 2753 | . 2 ⊢ (5↑2) = ;25 |
| 31 | 3cn 12274 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli 11497 | . . . 4 ⊢ -3 ∈ ℂ |
| 33 | expneg 14041 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
| 34 | 32, 6, 33 | mp2an 692 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
| 35 | sqneg 14087 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
| 36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
| 37 | sq3 14170 | . . . . 5 ⊢ (3↑2) = 9 | |
| 38 | 36, 37 | eqtri 2753 | . . . 4 ⊢ (-3↑2) = 9 |
| 39 | 38 | oveq2i 7401 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
| 40 | 34, 39 | eqtri 2753 | . 2 ⊢ (-3↑-2) = (1 / 9) |
| 41 | 30, 40 | pm3.2i 470 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 · cmul 11080 -cneg 11413 / cdiv 11842 2c2 12248 3c3 12249 4c4 12250 5c5 12251 6c6 12252 8c8 12254 9c9 12255 ℕ0cn0 12449 ;cdc 12656 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: ex-sqrt 30390 |
| Copyright terms: Public domain | W3C validator |