| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version | ||
| Description: Example for df-exp 14085. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12311 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 7420 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 12330 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | binom21 14242 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2nn0 12523 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 12525 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 12391 | . . . . 5 ⊢ (4 + 1) = 5 | |
| 9 | sq4e2t8 14222 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 10 | 8cn 12342 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 11 | 2cn 12320 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 12828 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
| 13 | 10, 11, 12 | mulcomli 11249 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
| 14 | 9, 13 | eqtri 2759 | . . . . . . 7 ⊢ (4↑2) = ;16 |
| 15 | 4t2e8 12413 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 3, 11, 15 | mulcomli 11249 | . . . . . . 7 ⊢ (2 · 4) = 8 |
| 17 | 14, 16 | oveq12i 7422 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
| 18 | 1nn0 12522 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 12527 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 12529 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 21 | eqid 2736 | . . . . . . 7 ⊢ ;16 = ;16 | |
| 22 | 1p1e2 12370 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 23 | 6cn 12336 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 12797 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
| 25 | 10, 23, 24 | addcomli 11432 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
| 26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12774 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
| 27 | 17, 26 | eqtri 2759 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
| 28 | 6, 7, 8, 27 | decsuc 12744 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
| 29 | 5, 28 | eqtri 2759 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
| 30 | 2, 29 | eqtri 2759 | . 2 ⊢ (5↑2) = ;25 |
| 31 | 3cn 12326 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli 11556 | . . . 4 ⊢ -3 ∈ ℂ |
| 33 | expneg 14092 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
| 34 | 32, 6, 33 | mp2an 692 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
| 35 | sqneg 14138 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
| 36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
| 37 | sq3 14221 | . . . . 5 ⊢ (3↑2) = 9 | |
| 38 | 36, 37 | eqtri 2759 | . . . 4 ⊢ (-3↑2) = 9 |
| 39 | 38 | oveq2i 7421 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
| 40 | 34, 39 | eqtri 2759 | . 2 ⊢ (-3↑-2) = (1 / 9) |
| 41 | 30, 40 | pm3.2i 470 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 -cneg 11472 / cdiv 11899 2c2 12300 3c3 12301 4c4 12302 5c5 12303 6c6 12304 8c8 12306 9c9 12307 ℕ0cn0 12506 ;cdc 12713 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: ex-sqrt 30440 |
| Copyright terms: Public domain | W3C validator |