| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-exp | Structured version Visualization version GIF version | ||
| Description: Example for df-exp 13966. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12188 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 7356 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 12207 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | binom21 14123 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2nn0 12395 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 12397 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 12263 | . . . . 5 ⊢ (4 + 1) = 5 | |
| 9 | sq4e2t8 14103 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 10 | 8cn 12219 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 11 | 2cn 12197 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 12700 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
| 13 | 10, 11, 12 | mulcomli 11118 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
| 14 | 9, 13 | eqtri 2754 | . . . . . . 7 ⊢ (4↑2) = ;16 |
| 15 | 4t2e8 12285 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 3, 11, 15 | mulcomli 11118 | . . . . . . 7 ⊢ (2 · 4) = 8 |
| 17 | 14, 16 | oveq12i 7358 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
| 18 | 1nn0 12394 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 12399 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 12401 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 21 | eqid 2731 | . . . . . . 7 ⊢ ;16 = ;16 | |
| 22 | 1p1e2 12242 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 23 | 6cn 12213 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 12669 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
| 25 | 10, 23, 24 | addcomli 11302 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
| 26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 12646 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
| 27 | 17, 26 | eqtri 2754 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
| 28 | 6, 7, 8, 27 | decsuc 12616 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
| 29 | 5, 28 | eqtri 2754 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
| 30 | 2, 29 | eqtri 2754 | . 2 ⊢ (5↑2) = ;25 |
| 31 | 3cn 12203 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli 11426 | . . . 4 ⊢ -3 ∈ ℂ |
| 33 | expneg 13973 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
| 34 | 32, 6, 33 | mp2an 692 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
| 35 | sqneg 14019 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
| 36 | 31, 35 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
| 37 | sq3 14102 | . . . . 5 ⊢ (3↑2) = 9 | |
| 38 | 36, 37 | eqtri 2754 | . . . 4 ⊢ (-3↑2) = 9 |
| 39 | 38 | oveq2i 7357 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
| 40 | 34, 39 | eqtri 2754 | . 2 ⊢ (-3↑-2) = (1 / 9) |
| 41 | 30, 40 | pm3.2i 470 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 1c1 11004 + caddc 11006 · cmul 11008 -cneg 11342 / cdiv 11771 2c2 12177 3c3 12178 4c4 12179 5c5 12180 6c6 12181 8c8 12183 9c9 12184 ℕ0cn0 12378 ;cdc 12585 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: ex-sqrt 30429 |
| Copyright terms: Public domain | W3C validator |