Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) |
2 | 1 | eqeq1d 2760 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 5044 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁)) |
4 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑥 = 𝐴) |
5 | 4 | sneqd 4534 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → {𝑥} = {𝐴}) |
6 | 5 | xpeq2d 5554 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
7 | 6 | seqeq3d 13426 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → seq1( · , (ℕ ×
{𝑥})) = seq1( · ,
(ℕ × {𝐴}))) |
8 | 7, 1 | fveq12d 6665 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ ×
{𝑥}))‘𝑦) = (seq1( · , (ℕ
× {𝐴}))‘𝑁)) |
9 | 1 | negeqd 10918 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → -𝑦 = -𝑁) |
10 | 7, 9 | fveq12d 6665 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ ×
{𝑥}))‘-𝑦) = (seq1( · , (ℕ
× {𝐴}))‘-𝑁)) |
11 | 10 | oveq2d 7166 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (1 / (seq1( · , (ℕ
× {𝑥}))‘-𝑦)) = (1 / (seq1( · ,
(ℕ × {𝐴}))‘-𝑁))) |
12 | 3, 8, 11 | ifbieq12d 4448 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ ×
{𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}))‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}))‘-𝑁)))) |
13 | 2, 12 | ifbieq2d 4446 |
. 2
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ ×
{𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘-𝑁))))) |
14 | | df-exp 13480 |
. 2
⊢ ↑ =
(𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ
× {𝑥}))‘𝑦), (1 / (seq1( · ,
(ℕ × {𝑥}))‘-𝑦))))) |
15 | | 1ex 10675 |
. . 3
⊢ 1 ∈
V |
16 | | fvex 6671 |
. . . 4
⊢ (seq1(
· , (ℕ × {𝐴}))‘𝑁) ∈ V |
17 | | ovex 7183 |
. . . 4
⊢ (1 /
(seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V |
18 | 16, 17 | ifex 4470 |
. . 3
⊢ if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘-𝑁))) ∈ V |
19 | 15, 18 | ifex 4470 |
. 2
⊢ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}))‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}))‘-𝑁)))) ∈ V |
20 | 13, 14, 19 | ovmpoa 7300 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘-𝑁))))) |