MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Visualization version   GIF version

Theorem expval 14035
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem expval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑦 = 𝑁)
21eqeq1d 2732 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
31breq2d 5122 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁))
4 simpl 482 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑥 = 𝐴)
54sneqd 4604 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑁) → {𝑥} = {𝐴})
65xpeq2d 5671 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴}))
76seqeq3d 13981 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
87, 1fveq12d 6868 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
91negeqd 11422 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → -𝑦 = -𝑁)
107, 9fveq12d 6868 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
1110oveq2d 7406 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
123, 8, 11ifbieq12d 4520 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
132, 12ifbieq2d 4518 . 2 ((𝑥 = 𝐴𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
14 df-exp 14034 . 2 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
15 1ex 11177 . . 3 1 ∈ V
16 fvex 6874 . . . 4 (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V
17 ovex 7423 . . . 4 (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V
1816, 17ifex 4542 . . 3 if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V
1915, 18ifex 4542 . 2 if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V
2013, 14, 19ovmpoa 7547 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491  {csn 4592   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  -cneg 11413   / cdiv 11842  cn 12193  cz 12536  seqcseq 13973  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-1cn 11133
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-neg 11415  df-seq 13974  df-exp 14034
This theorem is referenced by:  expnnval  14036  exp0  14037  expneg  14041
  Copyright terms: Public domain W3C validator