MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Visualization version   GIF version

Theorem expval 13481
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem expval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑦 = 𝑁)
21eqeq1d 2760 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
31breq2d 5044 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁))
4 simpl 486 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑥 = 𝐴)
54sneqd 4534 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑁) → {𝑥} = {𝐴})
65xpeq2d 5554 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴}))
76seqeq3d 13426 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
87, 1fveq12d 6665 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
91negeqd 10918 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → -𝑦 = -𝑁)
107, 9fveq12d 6665 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
1110oveq2d 7166 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
123, 8, 11ifbieq12d 4448 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
132, 12ifbieq2d 4446 . 2 ((𝑥 = 𝐴𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
14 df-exp 13480 . 2 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
15 1ex 10675 . . 3 1 ∈ V
16 fvex 6671 . . . 4 (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V
17 ovex 7183 . . . 4 (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V
1816, 17ifex 4470 . . 3 if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V
1915, 18ifex 4470 . 2 if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V
2013, 14, 19ovmpoa 7300 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  ifcif 4420  {csn 4522   class class class wbr 5032   × cxp 5522  cfv 6335  (class class class)co 7150  cc 10573  0cc0 10575  1c1 10576   · cmul 10580   < clt 10713  -cneg 10909   / cdiv 11335  cn 11674  cz 12020  seqcseq 13418  cexp 13479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-1cn 10633
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-iota 6294  df-fun 6337  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-neg 10911  df-seq 13419  df-exp 13480
This theorem is referenced by:  expnnval  13482  exp0  13483  expneg  13487
  Copyright terms: Public domain W3C validator