![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expval | Structured version Visualization version GIF version |
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
2 | 1 | eqeq1d 2737 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 5160 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁)) |
4 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑥 = 𝐴) | |
5 | 4 | sneqd 4643 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → {𝑥} = {𝐴}) |
6 | 5 | xpeq2d 5719 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
7 | 6 | seqeq3d 14047 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴}))) |
8 | 7, 1 | fveq12d 6914 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) |
9 | 1 | negeqd 11500 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → -𝑦 = -𝑁) |
10 | 7, 9 | fveq12d 6914 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁)) |
11 | 10 | oveq2d 7447 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) |
12 | 3, 8, 11 | ifbieq12d 4559 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) |
13 | 2, 12 | ifbieq2d 4557 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
14 | df-exp 14100 | . 2 ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | |
15 | 1ex 11255 | . . 3 ⊢ 1 ∈ V | |
16 | fvex 6920 | . . . 4 ⊢ (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V | |
17 | ovex 7464 | . . . 4 ⊢ (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V | |
18 | 16, 17 | ifex 4581 | . . 3 ⊢ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V |
19 | 15, 18 | ifex 4581 | . 2 ⊢ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V |
20 | 13, 14, 19 | ovmpoa 7588 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 {csn 4631 class class class wbr 5148 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 -cneg 11491 / cdiv 11918 ℕcn 12264 ℤcz 12611 seqcseq 14039 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-neg 11493 df-seq 14040 df-exp 14100 |
This theorem is referenced by: expnnval 14102 exp0 14103 expneg 14107 |
Copyright terms: Public domain | W3C validator |