Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expval | Structured version Visualization version GIF version |
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 5082 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁)) |
4 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑥 = 𝐴) | |
5 | 4 | sneqd 4570 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → {𝑥} = {𝐴}) |
6 | 5 | xpeq2d 5610 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
7 | 6 | seqeq3d 13657 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴}))) |
8 | 7, 1 | fveq12d 6763 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) |
9 | 1 | negeqd 11145 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → -𝑦 = -𝑁) |
10 | 7, 9 | fveq12d 6763 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁)) |
11 | 10 | oveq2d 7271 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) |
12 | 3, 8, 11 | ifbieq12d 4484 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) |
13 | 2, 12 | ifbieq2d 4482 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
14 | df-exp 13711 | . 2 ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | |
15 | 1ex 10902 | . . 3 ⊢ 1 ∈ V | |
16 | fvex 6769 | . . . 4 ⊢ (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V | |
17 | ovex 7288 | . . . 4 ⊢ (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V | |
18 | 16, 17 | ifex 4506 | . . 3 ⊢ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V |
19 | 15, 18 | ifex 4506 | . 2 ⊢ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V |
20 | 13, 14, 19 | ovmpoa 7406 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 {csn 4558 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 -cneg 11136 / cdiv 11562 ℕcn 11903 ℤcz 12249 seqcseq 13649 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-neg 11138 df-seq 13650 df-exp 13711 |
This theorem is referenced by: expnnval 13713 exp0 13714 expneg 13718 |
Copyright terms: Public domain | W3C validator |