MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Visualization version   GIF version

Theorem expval 13972
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem expval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑦 = 𝑁)
21eqeq1d 2735 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
31breq2d 5105 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁))
4 simpl 482 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑥 = 𝐴)
54sneqd 4587 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑁) → {𝑥} = {𝐴})
65xpeq2d 5649 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴}))
76seqeq3d 13918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
87, 1fveq12d 6835 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
91negeqd 11361 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → -𝑦 = -𝑁)
107, 9fveq12d 6835 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
1110oveq2d 7368 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
123, 8, 11ifbieq12d 4503 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
132, 12ifbieq2d 4501 . 2 ((𝑥 = 𝐴𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
14 df-exp 13971 . 2 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
15 1ex 11115 . . 3 1 ∈ V
16 fvex 6841 . . . 4 (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V
17 ovex 7385 . . . 4 (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V
1816, 17ifex 4525 . . 3 if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V
1915, 18ifex 4525 . 2 if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V
2013, 14, 19ovmpoa 7507 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ifcif 4474  {csn 4575   class class class wbr 5093   × cxp 5617  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   · cmul 11018   < clt 11153  -cneg 11352   / cdiv 11781  cn 12132  cz 12475  seqcseq 13910  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-1cn 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-neg 11354  df-seq 13911  df-exp 13971
This theorem is referenced by:  expnnval  13973  exp0  13974  expneg  13978
  Copyright terms: Public domain W3C validator