![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expval | Structured version Visualization version GIF version |
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
2 | 1 | eqeq1d 2733 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 5160 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁)) |
4 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑥 = 𝐴) | |
5 | 4 | sneqd 4640 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → {𝑥} = {𝐴}) |
6 | 5 | xpeq2d 5706 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
7 | 6 | seqeq3d 13981 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴}))) |
8 | 7, 1 | fveq12d 6898 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) |
9 | 1 | negeqd 11461 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → -𝑦 = -𝑁) |
10 | 7, 9 | fveq12d 6898 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁)) |
11 | 10 | oveq2d 7428 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) |
12 | 3, 8, 11 | ifbieq12d 4556 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) |
13 | 2, 12 | ifbieq2d 4554 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
14 | df-exp 14035 | . 2 ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | |
15 | 1ex 11217 | . . 3 ⊢ 1 ∈ V | |
16 | fvex 6904 | . . . 4 ⊢ (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V | |
17 | ovex 7445 | . . . 4 ⊢ (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V | |
18 | 16, 17 | ifex 4578 | . . 3 ⊢ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V |
19 | 15, 18 | ifex 4578 | . 2 ⊢ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V |
20 | 13, 14, 19 | ovmpoa 7566 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ifcif 4528 {csn 4628 class class class wbr 5148 × cxp 5674 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 0cc0 11116 1c1 11117 · cmul 11121 < clt 11255 -cneg 11452 / cdiv 11878 ℕcn 12219 ℤcz 12565 seqcseq 13973 ↑cexp 14034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-1cn 11174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-neg 11454 df-seq 13974 df-exp 14035 |
This theorem is referenced by: expnnval 14037 exp0 14038 expneg 14042 |
Copyright terms: Public domain | W3C validator |