| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expval | Structured version Visualization version GIF version | ||
| Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
| 2 | 1 | eqeq1d 2731 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
| 3 | 1 | breq2d 5119 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁)) |
| 4 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑥 = 𝐴) | |
| 5 | 4 | sneqd 4601 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → {𝑥} = {𝐴}) |
| 6 | 5 | xpeq2d 5668 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
| 7 | 6 | seqeq3d 13974 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴}))) |
| 8 | 7, 1 | fveq12d 6865 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) |
| 9 | 1 | negeqd 11415 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → -𝑦 = -𝑁) |
| 10 | 7, 9 | fveq12d 6865 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁)) |
| 11 | 10 | oveq2d 7403 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) |
| 12 | 3, 8, 11 | ifbieq12d 4517 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) |
| 13 | 2, 12 | ifbieq2d 4515 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
| 14 | df-exp 14027 | . 2 ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | |
| 15 | 1ex 11170 | . . 3 ⊢ 1 ∈ V | |
| 16 | fvex 6871 | . . . 4 ⊢ (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V | |
| 17 | ovex 7420 | . . . 4 ⊢ (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V | |
| 18 | 16, 17 | ifex 4539 | . . 3 ⊢ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V |
| 19 | 15, 18 | ifex 4539 | . 2 ⊢ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V |
| 20 | 13, 14, 19 | ovmpoa 7544 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 {csn 4589 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 -cneg 11406 / cdiv 11835 ℕcn 12186 ℤcz 12529 seqcseq 13966 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-neg 11408 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: expnnval 14029 exp0 14030 expneg 14034 |
| Copyright terms: Public domain | W3C validator |