MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Visualization version   GIF version

Theorem expval 14086
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem expval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑦 = 𝑁)
21eqeq1d 2738 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
31breq2d 5136 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁))
4 simpl 482 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑥 = 𝐴)
54sneqd 4618 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑁) → {𝑥} = {𝐴})
65xpeq2d 5689 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴}))
76seqeq3d 14032 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
87, 1fveq12d 6888 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
91negeqd 11481 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → -𝑦 = -𝑁)
107, 9fveq12d 6888 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
1110oveq2d 7426 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
123, 8, 11ifbieq12d 4534 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
132, 12ifbieq2d 4532 . 2 ((𝑥 = 𝐴𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
14 df-exp 14085 . 2 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
15 1ex 11236 . . 3 1 ∈ V
16 fvex 6894 . . . 4 (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V
17 ovex 7443 . . . 4 (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V
1816, 17ifex 4556 . . 3 if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V
1915, 18ifex 4556 . 2 if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V
2013, 14, 19ovmpoa 7567 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4505  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  -cneg 11472   / cdiv 11899  cn 12245  cz 12593  seqcseq 14024  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-1cn 11192
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-neg 11474  df-seq 14025  df-exp 14085
This theorem is referenced by:  expnnval  14087  exp0  14088  expneg  14092
  Copyright terms: Public domain W3C validator