Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expval | Structured version Visualization version GIF version |
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 5086 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁)) |
4 | simpl 483 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → 𝑥 = 𝐴) | |
5 | 4 | sneqd 4573 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → {𝑥} = {𝐴}) |
6 | 5 | xpeq2d 5619 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
7 | 6 | seqeq3d 13729 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴}))) |
8 | 7, 1 | fveq12d 6781 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) |
9 | 1 | negeqd 11215 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → -𝑦 = -𝑁) |
10 | 7, 9 | fveq12d 6781 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁)) |
11 | 10 | oveq2d 7291 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) |
12 | 3, 8, 11 | ifbieq12d 4487 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) |
13 | 2, 12 | ifbieq2d 4485 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
14 | df-exp 13783 | . 2 ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | |
15 | 1ex 10971 | . . 3 ⊢ 1 ∈ V | |
16 | fvex 6787 | . . . 4 ⊢ (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V | |
17 | ovex 7308 | . . . 4 ⊢ (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V | |
18 | 16, 17 | ifex 4509 | . . 3 ⊢ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V |
19 | 15, 18 | ifex 4509 | . 2 ⊢ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V |
20 | 13, 14, 19 | ovmpoa 7428 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 {csn 4561 class class class wbr 5074 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 -cneg 11206 / cdiv 11632 ℕcn 11973 ℤcz 12319 seqcseq 13721 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-neg 11208 df-seq 13722 df-exp 13783 |
This theorem is referenced by: expnnval 13785 exp0 13786 expneg 13790 |
Copyright terms: Public domain | W3C validator |