Home | Metamath
Proof Explorer Theorem List (p. 141 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hashclb 14001 | Reverse closure of the ♯ function. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (♯‘𝐴) ∈ ℕ0)) | ||
Theorem | nfile 14002 | The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
Theorem | hashvnfin 14003 | A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑆) = 𝑁 → 𝑆 ∈ Fin)) | ||
Theorem | hashnfinnn0 14004 | The size of an infinite set is not a nonnegative integer. (Contributed by Alexander van der Vekens, 21-Dec-2017.) (Proof shortened by Alexander van der Vekens, 18-Jan-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0) | ||
Theorem | isfinite4 14005 | A finite set is equinumerous to the range of integers from one up to the hash value of the set. In other words, counting objects with natural numbers works if and only if it is a finite collection. (Contributed by Richard Penner, 26-Feb-2020.) |
⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | ||
Theorem | hasheq0 14006 | Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | ||
Theorem | hashneq0 14007 | Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) | ||
Theorem | hashgt0n0 14008 | If the size of a set is greater than 0, the set is not empty. (Contributed by AV, 5-Aug-2018.) (Proof shortened by AV, 18-Nov-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 0 < (♯‘𝐴)) → 𝐴 ≠ ∅) | ||
Theorem | hashnncl 14009 | Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | ||
Theorem | hash0 14010 | The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
⊢ (♯‘∅) = 0 | ||
Theorem | hashelne0d 14011 | A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ¬ (♯‘𝐴) = 0) | ||
Theorem | hashsng 14012 | The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) | ||
Theorem | hashen1 14013 | A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) | ||
Theorem | hash1elsn 14014 | A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → (♯‘𝐴) = 1) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
Theorem | hashrabrsn 14015* | The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017.) |
⊢ (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0 | ||
Theorem | hashrabsn01 14016* | The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
Theorem | hashrabsn1 14017* | If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) | ||
Theorem | hashfn 14018 | A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) |
⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) | ||
Theorem | fseq1hash 14019 | The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | ||
Theorem | hashgadd 14020 | 𝐺 maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) | ||
Theorem | hashgval2 14021 | A short expression for the 𝐺 function of hashgf1o 13619. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | ||
Theorem | hashdom 14022 | Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | hashdomi 14023 | Non-strict order relation of the ♯ function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝐴 ≼ 𝐵 → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
Theorem | hashsdom 14024 | Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
Theorem | hashun 14025 | The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | hashun2 14026 | The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | hashun3 14027 | The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴 ∩ 𝐵)))) | ||
Theorem | hashinfxadd 14028 | The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) | ||
Theorem | hashunx 14029 | The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14025. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))) | ||
Theorem | hashge0 14030 | The cardinality of a set is greater than or equal to zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ (𝐴 ∈ 𝑉 → 0 ≤ (♯‘𝐴)) | ||
Theorem | hashgt0 14031 | The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) | ||
Theorem | hashge1 14032 | The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 1 ≤ (♯‘𝐴)) | ||
Theorem | 1elfz0hash 14033 | 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴))) | ||
Theorem | hashnn0n0nn 14034 | If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) | ||
Theorem | hashunsng 14035 | The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) | ||
Theorem | hashunsngx 14036 | The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng 14035. (Contributed by BTernaryTau, 9-Sep-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝐵 ∈ 𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))) | ||
Theorem | hashunsnggt 14037 | The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) | ||
Theorem | hashprg 14038 | The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | ||
Theorem | elprchashprn2 14039 | If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) | ||
Theorem | hashprb 14040 | The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2) | ||
Theorem | hashprdifel 14041 | The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} ⇒ ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | prhash2ex 14042 | There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 14051, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{0, 1}) = 2 | ||
Theorem | hashle00 14043 | If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Proof shortened by AV, 24-Oct-2021.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅)) | ||
Theorem | hashgt0elex 14044* | If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥 ∈ 𝑉) | ||
Theorem | hashgt0elexb 14045* | The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018.) |
⊢ (𝑉 ∈ 𝑊 → (0 < (♯‘𝑉) ↔ ∃𝑥 𝑥 ∈ 𝑉)) | ||
Theorem | hashp1i 14046 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴 & ⊢ (♯‘𝐴) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 | ||
Theorem | hash1 14047 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘1o) = 1 | ||
Theorem | hash2 14048 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘2o) = 2 | ||
Theorem | hash3 14049 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘3o) = 3 | ||
Theorem | hash4 14050 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘4o) = 4 | ||
Theorem | pr0hash2ex 14051 | There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{∅, {∅}}) = 2 | ||
Theorem | hashss 14052 | The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | ||
Theorem | prsshashgt1 14053 | The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) | ||
Theorem | hashin 14054 | The size of the intersection of a set and a class is less than or equal to the size of the set. (Contributed by AV, 4-Jan-2021.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘(𝐴 ∩ 𝐵)) ≤ (♯‘𝐴)) | ||
Theorem | hashssdif 14055 | The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) | ||
Theorem | hashdif 14056 | The size of the difference of a finite set and another set is the first set's size minus that of the intersection of both. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘(𝐴 ∩ 𝐵)))) | ||
Theorem | hashdifsn 14057 | The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | ||
Theorem | hashdifpr 14058 | The size of the difference of a finite set and a proper pair of its elements is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) | ||
Theorem | hashsn01 14059 | The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021.) |
⊢ ((♯‘{𝐴}) = 0 ∨ (♯‘{𝐴}) = 1) | ||
Theorem | hashsnle1 14060 | The size of a singleton is less than or equal to 1. (Contributed by AV, 23-Feb-2021.) |
⊢ (♯‘{𝐴}) ≤ 1 | ||
Theorem | hashsnlei 14061 | Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015.) (Proof shortened by AV, 23-Feb-2021.) |
⊢ ({𝐴} ∈ Fin ∧ (♯‘{𝐴}) ≤ 1) | ||
Theorem | hash1snb 14062* | The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | ||
Theorem | euhash1 14063* | The size of a set is 1 in terms of existential uniqueness. (Contributed by Alexander van der Vekens, 8-Feb-2018.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃!𝑎 𝑎 ∈ 𝑉)) | ||
Theorem | hash1n0 14064 | If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = 1) → 𝐴 ≠ ∅) | ||
Theorem | hashgt12el 14065* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) | ||
Theorem | hashgt12el2 14066* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 𝐴 ≠ 𝑏) | ||
Theorem | hashgt23el 14067* | A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) | ||
Theorem | hashunlei 14068 | Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐶 = (𝐴 ∪ 𝐵) & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) & ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐾 + 𝑀) = 𝑁 ⇒ ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) | ||
Theorem | hashsslei 14069 | Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) | ||
Theorem | hashfz 14070 | Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | ||
Theorem | fzsdom2 14071 | Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.) |
⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) | ||
Theorem | hashfzo 14072 | Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | hashfzo0 14073 | Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵) | ||
Theorem | hashfzp1 14074 | Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | hashfz0 14075 | Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.) |
⊢ (𝐵 ∈ ℕ0 → (♯‘(0...𝐵)) = (𝐵 + 1)) | ||
Theorem | hashxplem 14076 | Lemma for hashxp 14077. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ 𝐵 ∈ Fin ⇒ ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | ||
Theorem | hashxp 14077 | The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | ||
Theorem | hashmap 14078 | The size of the set exponential of two finite sets is the exponential of their sizes. (This is the original motivation behind the notation for set exponentiation.) (Contributed by Mario Carneiro, 5-Aug-2014.) (Proof shortened by AV, 18-Jul-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ↑m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))) | ||
Theorem | hashpw 14079 | The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) | ||
Theorem | hashfun 14080 | A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹))) | ||
Theorem | hashres 14081 | The number of elements of a finite function restricted to a subset of its domain is equal to the number of elements of that subset. (Contributed by AV, 15-Dec-2021.) |
⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | ||
Theorem | hashreshashfun 14082 | The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) |
⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) | ||
Theorem | hashimarn 14083 | The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.) |
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))) | ||
Theorem | hashimarni 14084 | If the size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 is a nonnegative integer, the size of the function 𝐹 is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) | ||
Theorem | resunimafz0 14085 | TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 28501: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) ⇒ ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) | ||
Theorem | fnfz0hash 14086 | The size of a function on a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 25-Jun-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1)) | ||
Theorem | ffz0hash 14087 | The size of a function on a finite set of sequential nonnegative integers equals the upper bound of the sequence increased by 1. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV, 11-Apr-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1)) | ||
Theorem | fnfz0hashnn0 14088 | The size of a function on a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by AV, 10-Apr-2021.) |
⊢ (𝐹 Fn (0...𝑁) → (♯‘𝐹) ∈ ℕ0) | ||
Theorem | ffzo0hash 14089 | The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁) | ||
Theorem | fnfzo0hash 14090 | The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁) | ||
Theorem | fnfzo0hashnn0 14091 | The value of the size function on a half-open range of nonnegative integers is a nonnegative integer. (Contributed by AV, 10-Apr-2021.) |
⊢ (𝐹 Fn (0..^𝑁) → (♯‘𝐹) ∈ ℕ0) | ||
Theorem | hashbclem 14092* | Lemma for hashbc 14093: inductive step. (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑗 ∈ ℤ ((♯‘𝐴)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑗})) & ⊢ (𝜑 → 𝐾 ∈ ℤ) ⇒ ⊢ (𝜑 → ((♯‘(𝐴 ∪ {𝑧}))C𝐾) = (♯‘{𝑥 ∈ 𝒫 (𝐴 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝐾})) | ||
Theorem | hashbc 14093* | The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})) | ||
Theorem | hashfacen 14094* | The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by AV, 7-Aug-2024.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) | ||
Theorem | hashfacenOLD 14095* | Obsolete version of hashfacen 14094 as of 7-Aug-2024. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) | ||
Theorem | hashf1lem1 14096* | Lemma for hashf1 14099. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 14-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ((♯‘𝐴) + 1) ≤ (♯‘𝐵)) & ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) ⇒ ⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ≈ (𝐵 ∖ ran 𝐹)) | ||
Theorem | hashf1lem1OLD 14097* | Obsolete version of hashf1lem1 14096 as of 7-Aug-2024. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ((♯‘𝐴) + 1) ≤ (♯‘𝐵)) & ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) ⇒ ⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ≈ (𝐵 ∖ ran 𝐹)) | ||
Theorem | hashf1lem2 14098* | Lemma for hashf1 14099. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ((♯‘𝐴) + 1) ≤ (♯‘𝐵)) ⇒ ⊢ (𝜑 → (♯‘{𝑓 ∣ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵}) = (((♯‘𝐵) − (♯‘𝐴)) · (♯‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐵}))) | ||
Theorem | hashf1 14099* | The permutation number ∣ 𝐴 ∣ ! · ( ∣ 𝐵 ∣ C ∣ 𝐴 ∣ ) = ∣ 𝐵 ∣ ! / ( ∣ 𝐵 ∣ − ∣ 𝐴 ∣ )! counts the number of injections from 𝐴 to 𝐵. (Contributed by Mario Carneiro, 21-Jan-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐵}) = ((!‘(♯‘𝐴)) · ((♯‘𝐵)C(♯‘𝐴)))) | ||
Theorem | hashfac 14100* | A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by Mario Carneiro, 17-Apr-2015.) |
⊢ (𝐴 ∈ Fin → (♯‘{𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = (!‘(♯‘𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |