| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 13991), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12500 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | expval 13988 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 4 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4485 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 6 | 3, 5 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4478 {csn 4579 class class class wbr 5095 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 -cneg 11366 / cdiv 11795 ℕcn 12146 ℤcz 12489 seqcseq 13926 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-z 12490 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: 0exp0e1 13991 expp1 13993 expneg 13994 expcllem 13997 mulexp 14026 expadd 14029 expmul 14032 exp0d 14065 leexp1a 14100 exple1 14102 bernneq 14154 modexp 14163 faclbnd4lem1 14218 faclbnd4lem3 14220 faclbnd4lem4 14221 cjexp 15075 absexp 15229 binom 15755 incexclem 15761 incexc 15762 climcndslem1 15774 pwdif 15793 fprodconst 15903 fallfac0 15953 bpoly0 15975 ege2le3 16015 eft0val 16039 demoivreALT 16128 pwp1fsum 16320 bits0 16357 0bits 16368 bitsinv1 16371 sadcadd 16387 smumullem 16421 numexp0 17005 psgnunilem4 19394 psgn0fv0 19408 psgnsn 19417 psgnprfval1 19419 cnfldexp 21329 expmhm 21361 expcn 24779 expcnOLD 24781 iblcnlem1 25705 itgcnlem 25707 dvexp 25873 dvexp2 25874 plyconst 26127 0dgr 26166 0dgrb 26167 aaliou3lem2 26267 cxp0 26595 1cubr 26768 log2ublem3 26874 basellem2 27008 basellem5 27011 lgsquad2lem2 27312 0dp2dp 32862 fldext2chn 33694 oddpwdc 34321 breprexp 34600 subfacval2 35159 fwddifn0 36137 stoweidlem19 46001 fmtno0 47525 bits0ALTV 47664 0dig2nn0e 48598 0dig2nn0o 48599 nn0sumshdiglemA 48605 nn0sumshdiglemB 48606 nn0sumshdiglem1 48607 nn0sumshdiglem2 48608 |
| Copyright terms: Public domain | W3C validator |