Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 13787) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12330 | . . 3 ⊢ 0 ∈ ℤ | |
2 | expval 13784 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
3 | 1, 2 | mpan2 688 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
4 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4466 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
6 | 3, 5 | eqtrdi 2794 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ifcif 4459 {csn 4561 class class class wbr 5074 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 -cneg 11206 / cdiv 11632 ℕcn 11973 ℤcz 12319 seqcseq 13721 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-neg 11208 df-z 12320 df-seq 13722 df-exp 13783 |
This theorem is referenced by: 0exp0e1 13787 expp1 13789 expneg 13790 expcllem 13793 mulexp 13822 expadd 13825 expmul 13828 exp0d 13858 leexp1a 13893 exple1 13894 bernneq 13944 modexp 13953 faclbnd4lem1 14007 faclbnd4lem3 14009 faclbnd4lem4 14010 cjexp 14861 absexp 15016 binom 15542 incexclem 15548 incexc 15549 climcndslem1 15561 pwdif 15580 fprodconst 15688 fallfac0 15738 bpoly0 15760 ege2le3 15799 eft0val 15821 demoivreALT 15910 pwp1fsum 16100 bits0 16135 0bits 16146 bitsinv1 16149 sadcadd 16165 smumullem 16199 numexp0 16777 psgnunilem4 19105 psgn0fv0 19119 psgnsn 19128 psgnprfval1 19130 cnfldexp 20631 expmhm 20667 expcn 24035 iblcnlem1 24952 itgcnlem 24954 dvexp 25117 dvexp2 25118 plyconst 25367 0dgr 25406 0dgrb 25407 aaliou3lem2 25503 cxp0 25825 1cubr 25992 log2ublem3 26098 basellem2 26231 basellem5 26234 lgsquad2lem2 26533 0dp2dp 31183 oddpwdc 32321 breprexp 32613 subfacval2 33149 fwddifn0 34466 stoweidlem19 43560 fmtno0 44992 bits0ALTV 45131 0dig2nn0e 45958 0dig2nn0o 45959 nn0sumshdiglemA 45965 nn0sumshdiglemB 45966 nn0sumshdiglem1 45967 nn0sumshdiglem2 45968 |
Copyright terms: Public domain | W3C validator |