| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 14084), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12599 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | expval 14081 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 4 | eqid 2735 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4507 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 6 | 3, 5 | eqtrdi 2786 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ifcif 4500 {csn 4601 class class class wbr 5119 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 · cmul 11134 < clt 11269 -cneg 11467 / cdiv 11894 ℕcn 12240 ℤcz 12588 seqcseq 14019 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-neg 11469 df-z 12589 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: 0exp0e1 14084 expp1 14086 expneg 14087 expcllem 14090 mulexp 14119 expadd 14122 expmul 14125 exp0d 14158 leexp1a 14193 exple1 14195 bernneq 14247 modexp 14256 faclbnd4lem1 14311 faclbnd4lem3 14313 faclbnd4lem4 14314 cjexp 15169 absexp 15323 binom 15846 incexclem 15852 incexc 15853 climcndslem1 15865 pwdif 15884 fprodconst 15994 fallfac0 16044 bpoly0 16066 ege2le3 16106 eft0val 16130 demoivreALT 16219 pwp1fsum 16410 bits0 16447 0bits 16458 bitsinv1 16461 sadcadd 16477 smumullem 16511 numexp0 17095 psgnunilem4 19478 psgn0fv0 19492 psgnsn 19501 psgnprfval1 19503 cnfldexp 21367 expmhm 21404 expcn 24814 expcnOLD 24816 iblcnlem1 25741 itgcnlem 25743 dvexp 25909 dvexp2 25910 plyconst 26163 0dgr 26202 0dgrb 26203 aaliou3lem2 26303 cxp0 26631 1cubr 26804 log2ublem3 26910 basellem2 27044 basellem5 27047 lgsquad2lem2 27348 0dp2dp 32883 fldext2chn 33762 oddpwdc 34386 breprexp 34665 subfacval2 35209 fwddifn0 36182 stoweidlem19 46048 fmtno0 47554 bits0ALTV 47693 0dig2nn0e 48592 0dig2nn0o 48593 nn0sumshdiglemA 48599 nn0sumshdiglemB 48600 nn0sumshdiglem1 48601 nn0sumshdiglem2 48602 |
| Copyright terms: Public domain | W3C validator |