Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 13489) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12036 | . . 3 ⊢ 0 ∈ ℤ | |
2 | expval 13486 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
4 | eqid 2758 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4430 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
6 | 3, 5 | eqtrdi 2809 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ifcif 4423 {csn 4525 class class class wbr 5035 × cxp 5525 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 0cc0 10580 1c1 10581 · cmul 10585 < clt 10718 -cneg 10914 / cdiv 11340 ℕcn 11679 ℤcz 12025 seqcseq 13423 ↑cexp 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-1cn 10638 ax-addrcl 10641 ax-rnegex 10651 ax-cnre 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-iota 6298 df-fun 6341 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-neg 10916 df-z 12026 df-seq 13424 df-exp 13485 |
This theorem is referenced by: 0exp0e1 13489 expp1 13491 expneg 13492 expcllem 13495 mulexp 13523 expadd 13526 expmul 13529 exp0d 13559 leexp1a 13594 exple1 13595 bernneq 13645 modexp 13654 faclbnd4lem1 13708 faclbnd4lem3 13710 faclbnd4lem4 13711 cjexp 14562 absexp 14717 binom 15238 incexclem 15244 incexc 15245 climcndslem1 15257 pwdif 15276 fprodconst 15385 fallfac0 15435 bpoly0 15457 ege2le3 15496 eft0val 15518 demoivreALT 15607 pwp1fsum 15797 bits0 15832 0bits 15843 bitsinv1 15846 sadcadd 15862 smumullem 15896 numexp0 16472 psgnunilem4 18697 psgn0fv0 18711 psgnsn 18720 psgnprfval1 18722 cnfldexp 20204 expmhm 20240 expcn 23578 iblcnlem1 24492 itgcnlem 24494 dvexp 24657 dvexp2 24658 plyconst 24907 0dgr 24946 0dgrb 24947 aaliou3lem2 25043 cxp0 25365 1cubr 25532 log2ublem3 25638 basellem2 25771 basellem5 25774 lgsquad2lem2 26073 0dp2dp 30711 oddpwdc 31844 breprexp 32136 subfacval2 32669 fwddifn0 34041 stoweidlem19 43055 fmtno0 44453 bits0ALTV 44592 0dig2nn0e 45419 0dig2nn0o 45420 nn0sumshdiglemA 45426 nn0sumshdiglemB 45427 nn0sumshdiglem1 45428 nn0sumshdiglem2 45429 |
Copyright terms: Public domain | W3C validator |