| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 13975), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12486 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | expval 13972 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 4 | eqid 2733 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4481 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 6 | 3, 5 | eqtrdi 2784 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ifcif 4474 {csn 4575 class class class wbr 5093 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 · cmul 11018 < clt 11153 -cneg 11352 / cdiv 11781 ℕcn 12132 ℤcz 12475 seqcseq 13910 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-addrcl 11074 ax-rnegex 11084 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-neg 11354 df-z 12476 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: 0exp0e1 13975 expp1 13977 expneg 13978 expcllem 13981 mulexp 14010 expadd 14013 expmul 14016 exp0d 14049 leexp1a 14084 exple1 14086 bernneq 14138 modexp 14147 faclbnd4lem1 14202 faclbnd4lem3 14204 faclbnd4lem4 14205 cjexp 15059 absexp 15213 binom 15739 incexclem 15745 incexc 15746 climcndslem1 15758 pwdif 15777 fprodconst 15887 fallfac0 15937 bpoly0 15959 ege2le3 15999 eft0val 16023 demoivreALT 16112 pwp1fsum 16304 bits0 16341 0bits 16352 bitsinv1 16355 sadcadd 16371 smumullem 16405 numexp0 16989 psgnunilem4 19411 psgn0fv0 19425 psgnsn 19434 psgnprfval1 19436 cnfldexp 21343 expmhm 21375 expcn 24791 expcnOLD 24793 iblcnlem1 25717 itgcnlem 25719 dvexp 25885 dvexp2 25886 plyconst 26139 0dgr 26178 0dgrb 26179 aaliou3lem2 26279 cxp0 26607 1cubr 26780 log2ublem3 26886 basellem2 27020 basellem5 27023 lgsquad2lem2 27324 0dp2dp 32896 fldext2chn 33762 oddpwdc 34388 breprexp 34667 subfacval2 35252 fwddifn0 36229 stoweidlem19 46141 fmtno0 47664 bits0ALTV 47803 0dig2nn0e 48737 0dig2nn0o 48738 nn0sumshdiglemA 48744 nn0sumshdiglemB 48745 nn0sumshdiglem1 48746 nn0sumshdiglem2 48747 |
| Copyright terms: Public domain | W3C validator |