![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the zeroth power. Under our definition, 0โ0 = 1 (0exp0e1 14034), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | โข (๐ด โ โ โ (๐ดโ0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12571 | . . 3 โข 0 โ โค | |
2 | expval 14031 | . . 3 โข ((๐ด โ โ โง 0 โ โค) โ (๐ดโ0) = if(0 = 0, 1, if(0 < 0, (seq1( ยท , (โ ร {๐ด}))โ0), (1 / (seq1( ยท , (โ ร {๐ด}))โ-0))))) | |
3 | 1, 2 | mpan2 689 | . 2 โข (๐ด โ โ โ (๐ดโ0) = if(0 = 0, 1, if(0 < 0, (seq1( ยท , (โ ร {๐ด}))โ0), (1 / (seq1( ยท , (โ ร {๐ด}))โ-0))))) |
4 | eqid 2732 | . . 3 โข 0 = 0 | |
5 | 4 | iftruei 4535 | . 2 โข if(0 = 0, 1, if(0 < 0, (seq1( ยท , (โ ร {๐ด}))โ0), (1 / (seq1( ยท , (โ ร {๐ด}))โ-0)))) = 1 |
6 | 3, 5 | eqtrdi 2788 | 1 โข (๐ด โ โ โ (๐ดโ0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 ifcif 4528 {csn 4628 class class class wbr 5148 ร cxp 5674 โcfv 6543 (class class class)co 7411 โcc 11110 0cc0 11112 1c1 11113 ยท cmul 11117 < clt 11250 -cneg 11447 / cdiv 11873 โcn 12214 โคcz 12560 seqcseq 13968 โcexp 14029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-neg 11449 df-z 12561 df-seq 13969 df-exp 14030 |
This theorem is referenced by: 0exp0e1 14034 expp1 14036 expneg 14037 expcllem 14040 mulexp 14069 expadd 14072 expmul 14075 exp0d 14107 leexp1a 14142 exple1 14143 bernneq 14194 modexp 14203 faclbnd4lem1 14255 faclbnd4lem3 14257 faclbnd4lem4 14258 cjexp 15099 absexp 15253 binom 15778 incexclem 15784 incexc 15785 climcndslem1 15797 pwdif 15816 fprodconst 15924 fallfac0 15974 bpoly0 15996 ege2le3 16035 eft0val 16057 demoivreALT 16146 pwp1fsum 16336 bits0 16371 0bits 16382 bitsinv1 16385 sadcadd 16401 smumullem 16435 numexp0 17011 psgnunilem4 19367 psgn0fv0 19381 psgnsn 19390 psgnprfval1 19392 cnfldexp 20984 expmhm 21020 expcn 24395 iblcnlem1 25312 itgcnlem 25314 dvexp 25477 dvexp2 25478 plyconst 25727 0dgr 25766 0dgrb 25767 aaliou3lem2 25863 cxp0 26185 1cubr 26354 log2ublem3 26460 basellem2 26593 basellem5 26596 lgsquad2lem2 26895 0dp2dp 32113 oddpwdc 33422 breprexp 33714 subfacval2 34247 fwddifn0 35211 gg-expcn 35239 stoweidlem19 44820 fmtno0 46293 bits0ALTV 46432 0dig2nn0e 47382 0dig2nn0o 47383 nn0sumshdiglemA 47389 nn0sumshdiglemB 47390 nn0sumshdiglem1 47391 nn0sumshdiglem2 47392 |
Copyright terms: Public domain | W3C validator |