| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 14038), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12547 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | expval 14035 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 4 | eqid 2730 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4498 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 6 | 3, 5 | eqtrdi 2781 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4491 {csn 4592 class class class wbr 5110 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 -cneg 11413 / cdiv 11842 ℕcn 12193 ℤcz 12536 seqcseq 13973 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-z 12537 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: 0exp0e1 14038 expp1 14040 expneg 14041 expcllem 14044 mulexp 14073 expadd 14076 expmul 14079 exp0d 14112 leexp1a 14147 exple1 14149 bernneq 14201 modexp 14210 faclbnd4lem1 14265 faclbnd4lem3 14267 faclbnd4lem4 14268 cjexp 15123 absexp 15277 binom 15803 incexclem 15809 incexc 15810 climcndslem1 15822 pwdif 15841 fprodconst 15951 fallfac0 16001 bpoly0 16023 ege2le3 16063 eft0val 16087 demoivreALT 16176 pwp1fsum 16368 bits0 16405 0bits 16416 bitsinv1 16419 sadcadd 16435 smumullem 16469 numexp0 17053 psgnunilem4 19434 psgn0fv0 19448 psgnsn 19457 psgnprfval1 19459 cnfldexp 21323 expmhm 21360 expcn 24770 expcnOLD 24772 iblcnlem1 25696 itgcnlem 25698 dvexp 25864 dvexp2 25865 plyconst 26118 0dgr 26157 0dgrb 26158 aaliou3lem2 26258 cxp0 26586 1cubr 26759 log2ublem3 26865 basellem2 26999 basellem5 27002 lgsquad2lem2 27303 0dp2dp 32836 fldext2chn 33725 oddpwdc 34352 breprexp 34631 subfacval2 35181 fwddifn0 36159 stoweidlem19 46024 fmtno0 47545 bits0ALTV 47684 0dig2nn0e 48605 0dig2nn0o 48606 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 nn0sumshdiglem1 48614 nn0sumshdiglem2 48615 |
| Copyright terms: Public domain | W3C validator |