| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 13970), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12476 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | expval 13967 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 4 | eqid 2731 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4482 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 6 | 3, 5 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4475 {csn 4576 class class class wbr 5091 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 · cmul 11008 < clt 11143 -cneg 11342 / cdiv 11771 ℕcn 12122 ℤcz 12465 seqcseq 13905 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-addrcl 11064 ax-rnegex 11074 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11344 df-z 12466 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: 0exp0e1 13970 expp1 13972 expneg 13973 expcllem 13976 mulexp 14005 expadd 14008 expmul 14011 exp0d 14044 leexp1a 14079 exple1 14081 bernneq 14133 modexp 14142 faclbnd4lem1 14197 faclbnd4lem3 14199 faclbnd4lem4 14200 cjexp 15054 absexp 15208 binom 15734 incexclem 15740 incexc 15741 climcndslem1 15753 pwdif 15772 fprodconst 15882 fallfac0 15932 bpoly0 15954 ege2le3 15994 eft0val 16018 demoivreALT 16107 pwp1fsum 16299 bits0 16336 0bits 16347 bitsinv1 16350 sadcadd 16366 smumullem 16400 numexp0 16984 psgnunilem4 19407 psgn0fv0 19421 psgnsn 19430 psgnprfval1 19432 cnfldexp 21339 expmhm 21371 expcn 24788 expcnOLD 24790 iblcnlem1 25714 itgcnlem 25716 dvexp 25882 dvexp2 25883 plyconst 26136 0dgr 26175 0dgrb 26176 aaliou3lem2 26276 cxp0 26604 1cubr 26777 log2ublem3 26883 basellem2 27017 basellem5 27020 lgsquad2lem2 27321 0dp2dp 32884 fldext2chn 33736 oddpwdc 34362 breprexp 34641 subfacval2 35219 fwddifn0 36197 stoweidlem19 46056 fmtno0 47570 bits0ALTV 47709 0dig2nn0e 48643 0dig2nn0o 48644 nn0sumshdiglemA 48650 nn0sumshdiglemB 48651 nn0sumshdiglem1 48652 nn0sumshdiglem2 48653 |
| Copyright terms: Public domain | W3C validator |