![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 14103), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12621 | . . 3 ⊢ 0 ∈ ℤ | |
2 | expval 14100 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
4 | eqid 2734 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4537 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
6 | 3, 5 | eqtrdi 2790 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ifcif 4530 {csn 4630 class class class wbr 5147 × cxp 5686 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 · cmul 11157 < clt 11292 -cneg 11490 / cdiv 11917 ℕcn 12263 ℤcz 12610 seqcseq 14038 ↑cexp 14098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-neg 11492 df-z 12611 df-seq 14039 df-exp 14099 |
This theorem is referenced by: 0exp0e1 14103 expp1 14105 expneg 14106 expcllem 14109 mulexp 14138 expadd 14141 expmul 14144 exp0d 14176 leexp1a 14211 exple1 14212 bernneq 14264 modexp 14273 faclbnd4lem1 14328 faclbnd4lem3 14330 faclbnd4lem4 14331 cjexp 15185 absexp 15339 binom 15862 incexclem 15868 incexc 15869 climcndslem1 15881 pwdif 15900 fprodconst 16010 fallfac0 16060 bpoly0 16082 ege2le3 16122 eft0val 16144 demoivreALT 16233 pwp1fsum 16424 bits0 16461 0bits 16472 bitsinv1 16475 sadcadd 16491 smumullem 16525 numexp0 17109 psgnunilem4 19529 psgn0fv0 19543 psgnsn 19552 psgnprfval1 19554 cnfldexp 21434 expmhm 21471 expcn 24909 expcnOLD 24911 iblcnlem1 25837 itgcnlem 25839 dvexp 26005 dvexp2 26006 plyconst 26259 0dgr 26298 0dgrb 26299 aaliou3lem2 26399 cxp0 26726 1cubr 26899 log2ublem3 27005 basellem2 27139 basellem5 27142 lgsquad2lem2 27443 0dp2dp 32875 fldext2chn 33733 oddpwdc 34335 breprexp 34626 subfacval2 35171 fwddifn0 36145 stoweidlem19 45974 fmtno0 47464 bits0ALTV 47603 0dig2nn0e 48461 0dig2nn0o 48462 nn0sumshdiglemA 48468 nn0sumshdiglemB 48469 nn0sumshdiglem1 48470 nn0sumshdiglem2 48471 |
Copyright terms: Public domain | W3C validator |