![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 14117), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . . 3 ⊢ 0 ∈ ℤ | |
2 | expval 14114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
4 | eqid 2740 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4555 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
6 | 3, 5 | eqtrdi 2796 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 {csn 4648 class class class wbr 5166 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 < clt 11324 -cneg 11521 / cdiv 11947 ℕcn 12293 ℤcz 12639 seqcseq 14052 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-neg 11523 df-z 12640 df-seq 14053 df-exp 14113 |
This theorem is referenced by: 0exp0e1 14117 expp1 14119 expneg 14120 expcllem 14123 mulexp 14152 expadd 14155 expmul 14158 exp0d 14190 leexp1a 14225 exple1 14226 bernneq 14278 modexp 14287 faclbnd4lem1 14342 faclbnd4lem3 14344 faclbnd4lem4 14345 cjexp 15199 absexp 15353 binom 15878 incexclem 15884 incexc 15885 climcndslem1 15897 pwdif 15916 fprodconst 16026 fallfac0 16076 bpoly0 16098 ege2le3 16138 eft0val 16160 demoivreALT 16249 pwp1fsum 16439 bits0 16474 0bits 16485 bitsinv1 16488 sadcadd 16504 smumullem 16538 numexp0 17123 psgnunilem4 19539 psgn0fv0 19553 psgnsn 19562 psgnprfval1 19564 cnfldexp 21440 expmhm 21477 expcn 24915 expcnOLD 24917 iblcnlem1 25843 itgcnlem 25845 dvexp 26011 dvexp2 26012 plyconst 26265 0dgr 26304 0dgrb 26305 aaliou3lem2 26403 cxp0 26730 1cubr 26903 log2ublem3 27009 basellem2 27143 basellem5 27146 lgsquad2lem2 27447 0dp2dp 32873 fldext2chn 33719 oddpwdc 34319 breprexp 34610 subfacval2 35155 fwddifn0 36128 stoweidlem19 45940 fmtno0 47414 bits0ALTV 47553 0dig2nn0e 48346 0dig2nn0o 48347 nn0sumshdiglemA 48353 nn0sumshdiglemB 48354 nn0sumshdiglem1 48355 nn0sumshdiglem2 48356 |
Copyright terms: Public domain | W3C validator |