| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. Under our definition, 0↑0 = 1 (0exp0e1 14031), following standard convention, for instance Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12540 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | expval 14028 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 4 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4495 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 6 | 3, 5 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4488 {csn 4589 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 -cneg 11406 / cdiv 11835 ℕcn 12186 ℤcz 12529 seqcseq 13966 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-neg 11408 df-z 12530 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: 0exp0e1 14031 expp1 14033 expneg 14034 expcllem 14037 mulexp 14066 expadd 14069 expmul 14072 exp0d 14105 leexp1a 14140 exple1 14142 bernneq 14194 modexp 14203 faclbnd4lem1 14258 faclbnd4lem3 14260 faclbnd4lem4 14261 cjexp 15116 absexp 15270 binom 15796 incexclem 15802 incexc 15803 climcndslem1 15815 pwdif 15834 fprodconst 15944 fallfac0 15994 bpoly0 16016 ege2le3 16056 eft0val 16080 demoivreALT 16169 pwp1fsum 16361 bits0 16398 0bits 16409 bitsinv1 16412 sadcadd 16428 smumullem 16462 numexp0 17046 psgnunilem4 19427 psgn0fv0 19441 psgnsn 19450 psgnprfval1 19452 cnfldexp 21316 expmhm 21353 expcn 24763 expcnOLD 24765 iblcnlem1 25689 itgcnlem 25691 dvexp 25857 dvexp2 25858 plyconst 26111 0dgr 26150 0dgrb 26151 aaliou3lem2 26251 cxp0 26579 1cubr 26752 log2ublem3 26858 basellem2 26992 basellem5 26995 lgsquad2lem2 27296 0dp2dp 32829 fldext2chn 33718 oddpwdc 34345 breprexp 34624 subfacval2 35174 fwddifn0 36152 stoweidlem19 46017 fmtno0 47541 bits0ALTV 47680 0dig2nn0e 48601 0dig2nn0o 48602 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 nn0sumshdiglem1 48610 nn0sumshdiglem2 48611 |
| Copyright terms: Public domain | W3C validator |