Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 13715) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12260 | . . 3 ⊢ 0 ∈ ℤ | |
2 | expval 13712 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
4 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4463 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
6 | 3, 5 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ifcif 4456 {csn 4558 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 -cneg 11136 / cdiv 11562 ℕcn 11903 ℤcz 12249 seqcseq 13649 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-neg 11138 df-z 12250 df-seq 13650 df-exp 13711 |
This theorem is referenced by: 0exp0e1 13715 expp1 13717 expneg 13718 expcllem 13721 mulexp 13750 expadd 13753 expmul 13756 exp0d 13786 leexp1a 13821 exple1 13822 bernneq 13872 modexp 13881 faclbnd4lem1 13935 faclbnd4lem3 13937 faclbnd4lem4 13938 cjexp 14789 absexp 14944 binom 15470 incexclem 15476 incexc 15477 climcndslem1 15489 pwdif 15508 fprodconst 15616 fallfac0 15666 bpoly0 15688 ege2le3 15727 eft0val 15749 demoivreALT 15838 pwp1fsum 16028 bits0 16063 0bits 16074 bitsinv1 16077 sadcadd 16093 smumullem 16127 numexp0 16705 psgnunilem4 19020 psgn0fv0 19034 psgnsn 19043 psgnprfval1 19045 cnfldexp 20543 expmhm 20579 expcn 23941 iblcnlem1 24857 itgcnlem 24859 dvexp 25022 dvexp2 25023 plyconst 25272 0dgr 25311 0dgrb 25312 aaliou3lem2 25408 cxp0 25730 1cubr 25897 log2ublem3 26003 basellem2 26136 basellem5 26139 lgsquad2lem2 26438 0dp2dp 31085 oddpwdc 32221 breprexp 32513 subfacval2 33049 fwddifn0 34393 stoweidlem19 43450 fmtno0 44880 bits0ALTV 45019 0dig2nn0e 45846 0dig2nn0o 45847 nn0sumshdiglemA 45853 nn0sumshdiglemB 45854 nn0sumshdiglem1 45855 nn0sumshdiglem2 45856 |
Copyright terms: Public domain | W3C validator |