| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version | ||
| Description: The zeroth power of zero equals one. See comment of exp0 14083. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0exp0e1 | ⊢ (0↑0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11227 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | exp0 14083 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-i2m1 11197 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-neg 11469 df-z 12589 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: faclbnd 14308 faclbnd3 14310 faclbnd4lem3 14313 facubnd 14318 ef0lem 16094 nn0expgcd 16583 coefv0 26205 tayl0 26321 cxpexp 26629 musum 27153 logexprlim 27188 etransclem14 46277 exple2lt6 48339 |
| Copyright terms: Public domain | W3C validator |