| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version | ||
| Description: The zeroth power of zero equals one. See comment of exp0 13972. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0exp0e1 | ⊢ (0↑0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11104 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | exp0 13972 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-i2m1 11074 ax-rnegex 11077 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11347 df-z 12469 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: faclbnd 14197 faclbnd3 14199 faclbnd4lem3 14202 facubnd 14207 ef0lem 15985 nn0expgcd 16475 coefv0 26180 tayl0 26296 cxpexp 26604 musum 27128 logexprlim 27163 etransclem14 46356 exple2lt6 48474 |
| Copyright terms: Public domain | W3C validator |