Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version |
Description: The zeroth power of zero equals one. See comment of exp0 13888. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0exp0e1 | ⊢ (0↑0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11069 | . 2 ⊢ 0 ∈ ℂ | |
2 | exp0 13888 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7338 ℂcc 10971 0cc0 10973 1c1 10974 ↑cexp 13884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-i2m1 11041 ax-rnegex 11044 ax-cnre 11046 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-iota 6432 df-fun 6482 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-neg 11310 df-z 12422 df-seq 13824 df-exp 13885 |
This theorem is referenced by: faclbnd 14106 faclbnd3 14108 faclbnd4lem3 14111 facubnd 14116 ef0lem 15888 coefv0 25516 tayl0 25628 cxpexp 25930 musum 26447 logexprlim 26480 nn0expgcd 40646 etransclem14 44177 exple2lt6 46118 |
Copyright terms: Public domain | W3C validator |