| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version | ||
| Description: The zeroth power of zero equals one. See comment of exp0 14006. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0exp0e1 | ⊢ (0↑0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11142 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | exp0 14006 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-i2m1 11112 ax-rnegex 11115 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-neg 11384 df-z 12506 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: faclbnd 14231 faclbnd3 14233 faclbnd4lem3 14236 facubnd 14241 ef0lem 16020 nn0expgcd 16510 coefv0 26186 tayl0 26302 cxpexp 26610 musum 27134 logexprlim 27169 etransclem14 46239 exple2lt6 48345 |
| Copyright terms: Public domain | W3C validator |