| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version | ||
| Description: The zeroth power of zero equals one. See comment of exp0 14037. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0exp0e1 | ⊢ (0↑0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11173 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | exp0 14037 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-i2m1 11143 ax-rnegex 11146 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-z 12537 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: faclbnd 14262 faclbnd3 14264 faclbnd4lem3 14267 facubnd 14272 ef0lem 16051 nn0expgcd 16541 coefv0 26160 tayl0 26276 cxpexp 26584 musum 27108 logexprlim 27143 etransclem14 46253 exple2lt6 48356 |
| Copyright terms: Public domain | W3C validator |