MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0exp0e1 Structured version   Visualization version   GIF version

Theorem 0exp0e1 14031
Description: The zeroth power of zero equals one. See comment of exp0 14030. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0exp0e1 (0↑0) = 1

Proof of Theorem 0exp0e1
StepHypRef Expression
1 0cn 11166 . 2 0 ∈ ℂ
2 exp0 14030 . 2 (0 ∈ ℂ → (0↑0) = 1)
31, 2ax-mp 5 1 (0↑0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-i2m1 11136  ax-rnegex 11139  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-neg 11408  df-z 12530  df-seq 13967  df-exp 14027
This theorem is referenced by:  faclbnd  14255  faclbnd3  14257  faclbnd4lem3  14260  facubnd  14265  ef0lem  16044  nn0expgcd  16534  coefv0  26153  tayl0  26269  cxpexp  26577  musum  27101  logexprlim  27136  etransclem14  46246  exple2lt6  48352
  Copyright terms: Public domain W3C validator