Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version |
Description: The zeroth power of zero equals one. See comment of exp0 13767. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0exp0e1 | ⊢ (0↑0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10951 | . 2 ⊢ 0 ∈ ℂ | |
2 | exp0 13767 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-i2m1 10923 ax-rnegex 10926 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-neg 11191 df-z 12303 df-seq 13703 df-exp 13764 |
This theorem is referenced by: faclbnd 13985 faclbnd3 13987 faclbnd4lem3 13990 facubnd 13995 ef0lem 15769 coefv0 25390 tayl0 25502 cxpexp 25804 musum 26321 logexprlim 26354 nn0expgcd 40315 etransclem14 43743 exple2lt6 45652 |
Copyright terms: Public domain | W3C validator |