| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0exp0e1 | Structured version Visualization version GIF version | ||
| Description: The zeroth power of zero equals one. See comment of exp0 14030. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0exp0e1 | ⊢ (0↑0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11166 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | exp0 14030 | . 2 ⊢ (0 ∈ ℂ → (0↑0) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0↑0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-i2m1 11136 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-neg 11408 df-z 12530 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: faclbnd 14255 faclbnd3 14257 faclbnd4lem3 14260 facubnd 14265 ef0lem 16044 nn0expgcd 16534 coefv0 26153 tayl0 26269 cxpexp 26577 musum 27101 logexprlim 27136 etransclem14 46246 exple2lt6 48352 |
| Copyright terms: Public domain | W3C validator |