| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. When 𝐴 is nonzero, this holds for all integers 𝑁, see expneg 14087. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| expp1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12503 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | seqp1 14034 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) | |
| 3 | nnuz 12895 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 2, 3 | eleq2s 2852 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
| 6 | peano2nn 12252 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 7 | fvconst2g 7194 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) | |
| 8 | 6, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) |
| 9 | 8 | oveq2d 7421 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 10 | 5, 9 | eqtrd 2770 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 11 | expnnval 14082 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) | |
| 12 | 6, 11 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) |
| 13 | expnnval 14082 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | |
| 14 | 13 | oveq1d 7420 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 15 | 10, 12, 14 | 3eqtr4d 2780 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 16 | exp1 14085 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 17 | mullid 11234 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 18 | 16, 17 | eqtr4d 2773 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴)) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴)) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 21 | 20 | oveq1d 7420 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1)) |
| 22 | 0p1e1 12362 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 23 | 21, 22 | eqtrdi 2786 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1) |
| 24 | 23 | oveq2d 7421 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1)) |
| 25 | oveq2 7413 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
| 26 | exp0 14083 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 27 | 25, 26 | sylan9eqr 2792 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
| 28 | 27 | oveq1d 7420 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴↑𝑁) · 𝐴) = (1 · 𝐴)) |
| 29 | 19, 24, 28 | 3eqtr4d 2780 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 30 | 15, 29 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 31 | 1, 30 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 ℤ≥cuz 12852 seqcseq 14019 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: expcllem 14090 expm1t 14108 expeq0 14110 mulexp 14119 expadd 14122 expmul 14125 sqval 14132 expp1d 14165 leexp2r 14192 leexp1a 14193 cu2 14218 i3 14221 binom3 14242 bernneq 14247 modexp 14256 faclbnd 14308 faclbnd2 14309 faclbnd4lem1 14311 faclbnd6 14317 cjexp 15169 absexp 15323 binomlem 15845 climcndslem1 15865 climcndslem2 15866 pwdif 15884 geolim 15886 geo2sum 15889 efexp 16119 demoivreALT 16219 rpnnen2lem11 16242 pwp1fsum 16410 prmdvdsexp 16734 pcexp 16879 prmreclem6 16941 numexpp1 17097 2exp7 17107 cnfldexp 21367 expcn 24814 expcnOLD 24816 mbfi1fseqlem5 25672 dvexp 25909 aaliou3lem2 26303 tangtx 26466 cxpmul2 26650 mcubic 26809 cubic2 26810 binom4 26812 dquartlem2 26814 quart1lem 26817 quart1 26818 quartlem1 26819 log2cnv 26906 log2ublem2 26909 log2ub 26911 basellem3 27045 chtublem 27174 perfectlem1 27192 perfectlem2 27193 bclbnd 27243 bposlem8 27254 dchrisum0flblem1 27471 pntlemo 27570 qabvexp 27589 psgnfzto1st 33116 oddpwdc 34386 hgt750lem 34683 subfacval2 35209 sinccvglem 35694 heiborlem6 37840 bfplem1 37846 3lexlogpow5ineq1 42067 perfectALTVlem1 47735 perfectALTVlem2 47736 altgsumbcALT 48328 |
| Copyright terms: Public domain | W3C validator |