MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expp1 Structured version   Visualization version   GIF version

Theorem expp1 13993
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. When 𝐴 is nonzero, this holds for all integers 𝑁, see expneg 13994. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Proof of Theorem expp1
StepHypRef Expression
1 elnn0 12404 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 seqp1 13941 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
3 nnuz 12796 . . . . . . 7 ℕ = (ℤ‘1)
42, 3eleq2s 2846 . . . . . 6 (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
54adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
6 peano2nn 12158 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7 fvconst2g 7142 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
86, 7sylan2 593 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
98oveq2d 7369 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
105, 9eqtrd 2764 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
11 expnnval 13989 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)))
126, 11sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)))
13 expnnval 13989 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1413oveq1d 7368 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
1510, 12, 143eqtr4d 2774 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
16 exp1 13992 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
17 mullid 11133 . . . . . 6 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1816, 17eqtr4d 2767 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴))
1918adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴))
20 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0)
2120oveq1d 7368 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1))
22 0p1e1 12263 . . . . . 6 (0 + 1) = 1
2321, 22eqtrdi 2780 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1)
2423oveq2d 7369 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1))
25 oveq2 7361 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
26 exp0 13990 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2725, 26sylan9eqr 2786 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
2827oveq1d 7368 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴𝑁) · 𝐴) = (1 · 𝐴))
2919, 24, 283eqtr4d 2774 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
3015, 29jaodan 959 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
311, 30sylan2b 594 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  {csn 4579   × cxp 5621  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cn 12146  0cn0 12402  cuz 12753  seqcseq 13926  cexp 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-seq 13927  df-exp 13987
This theorem is referenced by:  expcllem  13997  expm1t  14015  expeq0  14017  mulexp  14026  expadd  14029  expmul  14032  sqval  14039  expp1d  14072  leexp2r  14099  leexp1a  14100  cu2  14125  i3  14128  binom3  14149  bernneq  14154  modexp  14163  faclbnd  14215  faclbnd2  14216  faclbnd4lem1  14218  faclbnd6  14224  cjexp  15075  absexp  15229  binomlem  15754  climcndslem1  15774  climcndslem2  15775  pwdif  15793  geolim  15795  geo2sum  15798  efexp  16028  demoivreALT  16128  rpnnen2lem11  16151  pwp1fsum  16320  prmdvdsexp  16644  pcexp  16789  prmreclem6  16851  numexpp1  17007  2exp7  17017  cnfldexp  21329  expcn  24779  expcnOLD  24781  mbfi1fseqlem5  25636  dvexp  25873  aaliou3lem2  26267  tangtx  26430  cxpmul2  26614  mcubic  26773  cubic2  26774  binom4  26776  dquartlem2  26778  quart1lem  26781  quart1  26782  quartlem1  26783  log2cnv  26870  log2ublem2  26873  log2ub  26875  basellem3  27009  chtublem  27138  perfectlem1  27156  perfectlem2  27157  bclbnd  27207  bposlem8  27218  dchrisum0flblem1  27435  pntlemo  27534  qabvexp  27553  psgnfzto1st  33060  oddpwdc  34321  hgt750lem  34618  subfacval2  35159  sinccvglem  35644  heiborlem6  37795  bfplem1  37801  3lexlogpow5ineq1  42027  perfectALTVlem1  47706  perfectALTVlem2  47707  altgsumbcALT  48338
  Copyright terms: Public domain W3C validator