| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. When 𝐴 is nonzero, this holds for all integers 𝑁, see expneg 13994. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| expp1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12404 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | seqp1 13941 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) | |
| 3 | nnuz 12796 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 2, 3 | eleq2s 2846 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
| 6 | peano2nn 12158 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 7 | fvconst2g 7142 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) | |
| 8 | 6, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) |
| 9 | 8 | oveq2d 7369 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 10 | 5, 9 | eqtrd 2764 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 11 | expnnval 13989 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) | |
| 12 | 6, 11 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) |
| 13 | expnnval 13989 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | |
| 14 | 13 | oveq1d 7368 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 15 | 10, 12, 14 | 3eqtr4d 2774 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 16 | exp1 13992 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 17 | mullid 11133 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 18 | 16, 17 | eqtr4d 2767 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴)) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴)) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 21 | 20 | oveq1d 7368 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1)) |
| 22 | 0p1e1 12263 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 23 | 21, 22 | eqtrdi 2780 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1) |
| 24 | 23 | oveq2d 7369 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1)) |
| 25 | oveq2 7361 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
| 26 | exp0 13990 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 27 | 25, 26 | sylan9eqr 2786 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
| 28 | 27 | oveq1d 7368 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴↑𝑁) · 𝐴) = (1 · 𝐴)) |
| 29 | 19, 24, 28 | 3eqtr4d 2774 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 30 | 15, 29 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 31 | 1, 30 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {csn 4579 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ℕcn 12146 ℕ0cn0 12402 ℤ≥cuz 12753 seqcseq 13926 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: expcllem 13997 expm1t 14015 expeq0 14017 mulexp 14026 expadd 14029 expmul 14032 sqval 14039 expp1d 14072 leexp2r 14099 leexp1a 14100 cu2 14125 i3 14128 binom3 14149 bernneq 14154 modexp 14163 faclbnd 14215 faclbnd2 14216 faclbnd4lem1 14218 faclbnd6 14224 cjexp 15075 absexp 15229 binomlem 15754 climcndslem1 15774 climcndslem2 15775 pwdif 15793 geolim 15795 geo2sum 15798 efexp 16028 demoivreALT 16128 rpnnen2lem11 16151 pwp1fsum 16320 prmdvdsexp 16644 pcexp 16789 prmreclem6 16851 numexpp1 17007 2exp7 17017 cnfldexp 21329 expcn 24779 expcnOLD 24781 mbfi1fseqlem5 25636 dvexp 25873 aaliou3lem2 26267 tangtx 26430 cxpmul2 26614 mcubic 26773 cubic2 26774 binom4 26776 dquartlem2 26778 quart1lem 26781 quart1 26782 quartlem1 26783 log2cnv 26870 log2ublem2 26873 log2ub 26875 basellem3 27009 chtublem 27138 perfectlem1 27156 perfectlem2 27157 bclbnd 27207 bposlem8 27218 dchrisum0flblem1 27435 pntlemo 27534 qabvexp 27553 psgnfzto1st 33060 oddpwdc 34321 hgt750lem 34618 subfacval2 35159 sinccvglem 35644 heiborlem6 37795 bfplem1 37801 3lexlogpow5ineq1 42027 perfectALTVlem1 47706 perfectALTVlem2 47707 altgsumbcALT 48338 |
| Copyright terms: Public domain | W3C validator |