MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expp1 Structured version   Visualization version   GIF version

Theorem expp1 13717
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Proof of Theorem expp1
StepHypRef Expression
1 elnn0 12165 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 seqp1 13664 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
3 nnuz 12550 . . . . . . 7 ℕ = (ℤ‘1)
42, 3eleq2s 2857 . . . . . 6 (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
54adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
6 peano2nn 11915 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7 fvconst2g 7059 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
86, 7sylan2 592 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
98oveq2d 7271 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
105, 9eqtrd 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
11 expnnval 13713 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)))
126, 11sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)))
13 expnnval 13713 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1413oveq1d 7270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
1510, 12, 143eqtr4d 2788 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
16 exp1 13716 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
17 mulid2 10905 . . . . . 6 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1816, 17eqtr4d 2781 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴))
1918adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴))
20 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0)
2120oveq1d 7270 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1))
22 0p1e1 12025 . . . . . 6 (0 + 1) = 1
2321, 22eqtrdi 2795 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1)
2423oveq2d 7271 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1))
25 oveq2 7263 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
26 exp0 13714 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2725, 26sylan9eqr 2801 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
2827oveq1d 7270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴𝑁) · 𝐴) = (1 · 𝐴))
2919, 24, 283eqtr4d 2788 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
3015, 29jaodan 954 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
311, 30sylan2b 593 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cn 11903  0cn0 12163  cuz 12511  seqcseq 13649  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  expcllem  13721  expm1t  13739  expeq0  13741  mulexp  13750  expadd  13753  expmul  13756  sqval  13763  expp1d  13793  leexp2r  13820  leexp1a  13821  cu2  13845  i3  13848  binom3  13867  bernneq  13872  modexp  13881  faclbnd  13932  faclbnd2  13933  faclbnd4lem1  13935  faclbnd6  13941  cjexp  14789  absexp  14944  binomlem  15469  climcndslem1  15489  climcndslem2  15490  pwdif  15508  geolim  15510  geo2sum  15513  efexp  15738  demoivreALT  15838  rpnnen2lem11  15861  pwp1fsum  16028  prmdvdsexp  16348  pcexp  16488  prmreclem6  16550  decexp2  16704  numexpp1  16707  2exp7  16717  cnfldexp  20543  expcn  23941  mbfi1fseqlem5  24789  dvexp  25022  aaliou3lem2  25408  tangtx  25567  cxpmul2  25749  mcubic  25902  cubic2  25903  binom4  25905  dquartlem2  25907  quart1lem  25910  quart1  25911  quartlem1  25912  log2cnv  25999  log2ublem2  26002  log2ub  26004  basellem3  26137  chtublem  26264  perfectlem1  26282  perfectlem2  26283  bclbnd  26333  bposlem8  26344  dchrisum0flblem1  26561  pntlemo  26660  qabvexp  26679  psgnfzto1st  31274  oddpwdc  32221  hgt750lem  32531  subfacval2  33049  sinccvglem  33530  heiborlem6  35901  bfplem1  35907  3lexlogpow5ineq1  39990  perfectALTVlem1  45061  perfectALTVlem2  45062  altgsumbcALT  45577
  Copyright terms: Public domain W3C validator