| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expp1 | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. When 𝐴 is nonzero, this holds for all integers 𝑁, see expneg 14041. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| expp1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12451 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | seqp1 13988 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) | |
| 3 | nnuz 12843 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 2, 3 | eleq2s 2847 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1)))) |
| 6 | peano2nn 12205 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 7 | fvconst2g 7179 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) | |
| 8 | 6, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴) |
| 9 | 8 | oveq2d 7406 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 10 | 5, 9 | eqtrd 2765 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 11 | expnnval 14036 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) | |
| 12 | 6, 11 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1))) |
| 13 | expnnval 14036 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | |
| 14 | 13 | oveq1d 7405 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴)) |
| 15 | 10, 12, 14 | 3eqtr4d 2775 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 16 | exp1 14039 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 17 | mullid 11180 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 18 | 16, 17 | eqtr4d 2768 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴)) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴)) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 21 | 20 | oveq1d 7405 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1)) |
| 22 | 0p1e1 12310 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 23 | 21, 22 | eqtrdi 2781 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1) |
| 24 | 23 | oveq2d 7406 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1)) |
| 25 | oveq2 7398 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
| 26 | exp0 14037 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 27 | 25, 26 | sylan9eqr 2787 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
| 28 | 27 | oveq1d 7405 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴↑𝑁) · 𝐴) = (1 · 𝐴)) |
| 29 | 19, 24, 28 | 3eqtr4d 2775 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 30 | 15, 29 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| 31 | 1, 30 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 ℤ≥cuz 12800 seqcseq 13973 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: expcllem 14044 expm1t 14062 expeq0 14064 mulexp 14073 expadd 14076 expmul 14079 sqval 14086 expp1d 14119 leexp2r 14146 leexp1a 14147 cu2 14172 i3 14175 binom3 14196 bernneq 14201 modexp 14210 faclbnd 14262 faclbnd2 14263 faclbnd4lem1 14265 faclbnd6 14271 cjexp 15123 absexp 15277 binomlem 15802 climcndslem1 15822 climcndslem2 15823 pwdif 15841 geolim 15843 geo2sum 15846 efexp 16076 demoivreALT 16176 rpnnen2lem11 16199 pwp1fsum 16368 prmdvdsexp 16692 pcexp 16837 prmreclem6 16899 numexpp1 17055 2exp7 17065 cnfldexp 21323 expcn 24770 expcnOLD 24772 mbfi1fseqlem5 25627 dvexp 25864 aaliou3lem2 26258 tangtx 26421 cxpmul2 26605 mcubic 26764 cubic2 26765 binom4 26767 dquartlem2 26769 quart1lem 26772 quart1 26773 quartlem1 26774 log2cnv 26861 log2ublem2 26864 log2ub 26866 basellem3 27000 chtublem 27129 perfectlem1 27147 perfectlem2 27148 bclbnd 27198 bposlem8 27209 dchrisum0flblem1 27426 pntlemo 27525 qabvexp 27544 psgnfzto1st 33069 oddpwdc 34352 hgt750lem 34649 subfacval2 35181 sinccvglem 35666 heiborlem6 37817 bfplem1 37823 3lexlogpow5ineq1 42049 perfectALTVlem1 47726 perfectALTVlem2 47727 altgsumbcALT 48345 |
| Copyright terms: Public domain | W3C validator |