MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expp1 Structured version   Visualization version   GIF version

Theorem expp1 14086
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. When 𝐴 is nonzero, this holds for all integers 𝑁, see expneg 14087. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Proof of Theorem expp1
StepHypRef Expression
1 elnn0 12503 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 seqp1 14034 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
3 nnuz 12895 . . . . . . 7 ℕ = (ℤ‘1)
42, 3eleq2s 2852 . . . . . 6 (𝑁 ∈ ℕ → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
54adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
6 peano2nn 12252 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7 fvconst2g 7194 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
86, 7sylan2 593 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
98oveq2d 7421 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}))‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
105, 9eqtrd 2770 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
11 expnnval 14082 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)))
126, 11sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}))‘(𝑁 + 1)))
13 expnnval 14082 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
1413oveq1d 7420 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}))‘𝑁) · 𝐴))
1510, 12, 143eqtr4d 2780 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
16 exp1 14085 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
17 mullid 11234 . . . . . 6 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1816, 17eqtr4d 2773 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴))
1918adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴))
20 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0)
2120oveq1d 7420 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1))
22 0p1e1 12362 . . . . . 6 (0 + 1) = 1
2321, 22eqtrdi 2786 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1)
2423oveq2d 7421 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1))
25 oveq2 7413 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
26 exp0 14083 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2725, 26sylan9eqr 2792 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
2827oveq1d 7420 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴𝑁) · 𝐴) = (1 · 𝐴))
2919, 24, 283eqtr4d 2780 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
3015, 29jaodan 959 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
311, 30sylan2b 594 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  {csn 4601   × cxp 5652  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cn 12240  0cn0 12501  cuz 12852  seqcseq 14019  cexp 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-exp 14080
This theorem is referenced by:  expcllem  14090  expm1t  14108  expeq0  14110  mulexp  14119  expadd  14122  expmul  14125  sqval  14132  expp1d  14165  leexp2r  14192  leexp1a  14193  cu2  14218  i3  14221  binom3  14242  bernneq  14247  modexp  14256  faclbnd  14308  faclbnd2  14309  faclbnd4lem1  14311  faclbnd6  14317  cjexp  15169  absexp  15323  binomlem  15845  climcndslem1  15865  climcndslem2  15866  pwdif  15884  geolim  15886  geo2sum  15889  efexp  16119  demoivreALT  16219  rpnnen2lem11  16242  pwp1fsum  16410  prmdvdsexp  16734  pcexp  16879  prmreclem6  16941  numexpp1  17097  2exp7  17107  cnfldexp  21367  expcn  24814  expcnOLD  24816  mbfi1fseqlem5  25672  dvexp  25909  aaliou3lem2  26303  tangtx  26466  cxpmul2  26650  mcubic  26809  cubic2  26810  binom4  26812  dquartlem2  26814  quart1lem  26817  quart1  26818  quartlem1  26819  log2cnv  26906  log2ublem2  26909  log2ub  26911  basellem3  27045  chtublem  27174  perfectlem1  27192  perfectlem2  27193  bclbnd  27243  bposlem8  27254  dchrisum0flblem1  27471  pntlemo  27570  qabvexp  27589  psgnfzto1st  33116  oddpwdc  34386  hgt750lem  34683  subfacval2  35209  sinccvglem  35694  heiborlem6  37840  bfplem1  37846  3lexlogpow5ineq1  42067  perfectALTVlem1  47735  perfectALTVlem2  47736  altgsumbcALT  48328
  Copyright terms: Public domain W3C validator