Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc0 Structured version   Visualization version   GIF version

Theorem fmlasuc0 33246
Description: The valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 18-Sep-2023.)
Assertion
Ref Expression
fmlasuc0 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
Distinct variable groups:   𝑢,𝑁,𝑣,𝑥   𝑢,𝑖,𝑣,𝑥
Allowed substitution hint:   𝑁(𝑖)

Proof of Theorem fmlasuc0
Dummy variables 𝑓 𝑦 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmla 33207 . . 3 Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
2 fveq2 6756 . . . 4 (𝑛 = suc 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘suc 𝑁))
32dmeqd 5803 . . 3 (𝑛 = suc 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘suc 𝑁))
4 omsucelsucb 8259 . . . 4 (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)
54biimpi 215 . . 3 (𝑁 ∈ ω → suc 𝑁 ∈ suc ω)
6 fvex 6769 . . . . 5 ((∅ Sat ∅)‘suc 𝑁) ∈ V
76dmex 7732 . . . 4 dom ((∅ Sat ∅)‘suc 𝑁) ∈ V
87a1i 11 . . 3 (𝑁 ∈ ω → dom ((∅ Sat ∅)‘suc 𝑁) ∈ V)
91, 3, 5, 8fvmptd3 6880 . 2 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = dom ((∅ Sat ∅)‘suc 𝑁))
10 satf0sucom 33235 . . . . 5 (suc 𝑁 ∈ suc ω → ((∅ Sat ∅)‘suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁))
115, 10syl 17 . . . 4 (𝑁 ∈ ω → ((∅ Sat ∅)‘suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁))
12 nnon 7693 . . . . 5 (𝑁 ∈ ω → 𝑁 ∈ On)
13 rdgsuc 8226 . . . . 5 (𝑁 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
1412, 13syl 17 . . . 4 (𝑁 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
1511, 14eqtrd 2778 . . 3 (𝑁 ∈ ω → ((∅ Sat ∅)‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
1615dmeqd 5803 . 2 (𝑁 ∈ ω → dom ((∅ Sat ∅)‘suc 𝑁) = dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
17 elelsuc 6323 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ suc ω)
18 satf0sucom 33235 . . . . . . . . 9 (𝑁 ∈ suc ω → ((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁))
1918eqcomd 2744 . . . . . . . 8 (𝑁 ∈ suc ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁) = ((∅ Sat ∅)‘𝑁))
2017, 19syl 17 . . . . . . 7 (𝑁 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁) = ((∅ Sat ∅)‘𝑁))
2120fveq2d 6760 . . . . . 6 (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑁)))
22 eqidd 2739 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
23 id 22 . . . . . . . . 9 (𝑓 = ((∅ Sat ∅)‘𝑁) → 𝑓 = ((∅ Sat ∅)‘𝑁))
24 rexeq 3334 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑁) → (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
2524orbi1d 913 . . . . . . . . . . . 12 (𝑓 = ((∅ Sat ∅)‘𝑁) → ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
2625rexeqbi1dv 3332 . . . . . . . . . . 11 (𝑓 = ((∅ Sat ∅)‘𝑁) → (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
2726anbi2d 628 . . . . . . . . . 10 (𝑓 = ((∅ Sat ∅)‘𝑁) → ((𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
2827opabbidv 5136 . . . . . . . . 9 (𝑓 = ((∅ Sat ∅)‘𝑁) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
2923, 28uneq12d 4094 . . . . . . . 8 (𝑓 = ((∅ Sat ∅)‘𝑁) → (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
3029adantl 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑓 = ((∅ Sat ∅)‘𝑁)) → (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
31 fvex 6769 . . . . . . . 8 ((∅ Sat ∅)‘𝑁) ∈ V
3231a1i 11 . . . . . . 7 (𝑁 ∈ ω → ((∅ Sat ∅)‘𝑁) ∈ V)
33 peano1 7710 . . . . . . . . . . . . 13 ∅ ∈ ω
34 eleq1 2826 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
3533, 34mpbiri 257 . . . . . . . . . . . 12 (𝑦 = ∅ → 𝑦 ∈ ω)
3635adantr 480 . . . . . . . . . . 11 ((𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) → 𝑦 ∈ ω)
3736pm4.71ri 560 . . . . . . . . . 10 ((𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
3837opabbii 5137 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))}
39 omex 9331 . . . . . . . . . . . 12 ω ∈ V
40 id 22 . . . . . . . . . . . . 13 (ω ∈ V → ω ∈ V)
41 unab 4229 . . . . . . . . . . . . . . . . 17 ({𝑥 ∣ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∪ {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)}) = {𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}
4231abrexex 7778 . . . . . . . . . . . . . . . . . 18 {𝑥 ∣ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∈ V
4339abrexex 7778 . . . . . . . . . . . . . . . . . 18 {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)} ∈ V
4442, 43unex 7574 . . . . . . . . . . . . . . . . 17 ({𝑥 ∣ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∪ {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)}) ∈ V
4541, 44eqeltrri 2836 . . . . . . . . . . . . . . . 16 {𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V
4645a1i 11 . . . . . . . . . . . . . . 15 (((ω ∈ V ∧ 𝑦 ∈ ω) ∧ 𝑢 ∈ ((∅ Sat ∅)‘𝑁)) → {𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
4746ralrimiva 3107 . . . . . . . . . . . . . 14 ((ω ∈ V ∧ 𝑦 ∈ ω) → ∀𝑢 ∈ ((∅ Sat ∅)‘𝑁){𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
48 abrexex2g 7780 . . . . . . . . . . . . . 14 ((((∅ Sat ∅)‘𝑁) ∈ V ∧ ∀𝑢 ∈ ((∅ Sat ∅)‘𝑁){𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V) → {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
4931, 47, 48sylancr 586 . . . . . . . . . . . . 13 ((ω ∈ V ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
5040, 49opabex3rd 7782 . . . . . . . . . . . 12 (ω ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
5139, 50ax-mp 5 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V
52 simpr 484 . . . . . . . . . . . . 13 ((𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) → ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
5352anim2i 616 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) → (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5453ssopab2i 5456 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
5551, 54ssexi 5241 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))} ∈ V
5655a1i 11 . . . . . . . . 9 (𝑁 ∈ ω → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))} ∈ V)
5738, 56eqeltrid 2843 . . . . . . . 8 (𝑁 ∈ ω → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
58 unexg 7577 . . . . . . . 8 ((((∅ Sat ∅)‘𝑁) ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V) → (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
5931, 57, 58sylancr 586 . . . . . . 7 (𝑁 ∈ ω → (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6022, 30, 32, 59fvmptd 6864 . . . . . 6 (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑁)) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6121, 60eqtrd 2778 . . . . 5 (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6261dmeqd 5803 . . . 4 (𝑁 ∈ ω → dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = dom (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
63 dmun 5808 . . . 4 dom (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (dom ((∅ Sat ∅)‘𝑁) ∪ dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
6462, 63eqtrdi 2795 . . 3 (𝑁 ∈ ω → dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = (dom ((∅ Sat ∅)‘𝑁) ∪ dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
65 fmlafv 33242 . . . . . 6 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
6617, 65syl 17 . . . . 5 (𝑁 ∈ ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
6766eqcomd 2744 . . . 4 (𝑁 ∈ ω → dom ((∅ Sat ∅)‘𝑁) = (Fmla‘𝑁))
68 dmopab 5813 . . . . . 6 dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
6968a1i 11 . . . . 5 (𝑁 ∈ ω → dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
70 0ex 5226 . . . . . . . 8 ∅ ∈ V
7170isseti 3437 . . . . . . 7 𝑦 𝑦 = ∅
72 19.41v 1954 . . . . . . 7 (∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∃𝑦 𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
7371, 72mpbiran 705 . . . . . 6 (∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
7473abbii 2809 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}
7569, 74eqtrdi 2795 . . . 4 (𝑁 ∈ ω → dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})
7667, 75uneq12d 4094 . . 3 (𝑁 ∈ ω → (dom ((∅ Sat ∅)‘𝑁) ∪ dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7764, 76eqtrd 2778 . 2 (𝑁 ∈ ω → dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
789, 16, 773eqtrd 2782 1 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cun 3881  c0 4253  {copab 5132  cmpt 5153  dom cdm 5580  Oncon0 6251  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1st c1st 7802  reccrdg 8211  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197   Sat csat 33198  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-map 8575  df-sat 33205  df-fmla 33207
This theorem is referenced by:  fmlafvel  33247  fmlasuc  33248
  Copyright terms: Public domain W3C validator