Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc0 Structured version   Visualization version   GIF version

Theorem fmlasuc0 34830
Description: The valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 18-Sep-2023.)
Assertion
Ref Expression
fmlasuc0 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))}))
Distinct variable groups:   𝑒,𝑁,𝑣,π‘₯   𝑒,𝑖,𝑣,π‘₯
Allowed substitution hint:   𝑁(𝑖)

Proof of Theorem fmlasuc0
Dummy variables 𝑓 𝑦 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmla 34791 . . 3 Fmla = (𝑛 ∈ suc Ο‰ ↦ dom ((βˆ… Sat βˆ…)β€˜π‘›))
2 fveq2 6881 . . . 4 (𝑛 = suc 𝑁 β†’ ((βˆ… Sat βˆ…)β€˜π‘›) = ((βˆ… Sat βˆ…)β€˜suc 𝑁))
32dmeqd 5895 . . 3 (𝑛 = suc 𝑁 β†’ dom ((βˆ… Sat βˆ…)β€˜π‘›) = dom ((βˆ… Sat βˆ…)β€˜suc 𝑁))
4 omsucelsucb 8453 . . . 4 (𝑁 ∈ Ο‰ ↔ suc 𝑁 ∈ suc Ο‰)
54biimpi 215 . . 3 (𝑁 ∈ Ο‰ β†’ suc 𝑁 ∈ suc Ο‰)
6 fvex 6894 . . . . 5 ((βˆ… Sat βˆ…)β€˜suc 𝑁) ∈ V
76dmex 7895 . . . 4 dom ((βˆ… Sat βˆ…)β€˜suc 𝑁) ∈ V
87a1i 11 . . 3 (𝑁 ∈ Ο‰ β†’ dom ((βˆ… Sat βˆ…)β€˜suc 𝑁) ∈ V)
91, 3, 5, 8fvmptd3 7011 . 2 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) = dom ((βˆ… Sat βˆ…)β€˜suc 𝑁))
10 satf0sucom 34819 . . . . 5 (suc 𝑁 ∈ suc Ο‰ β†’ ((βˆ… Sat βˆ…)β€˜suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜suc 𝑁))
115, 10syl 17 . . . 4 (𝑁 ∈ Ο‰ β†’ ((βˆ… Sat βˆ…)β€˜suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜suc 𝑁))
12 nnon 7854 . . . . 5 (𝑁 ∈ Ο‰ β†’ 𝑁 ∈ On)
13 rdgsuc 8419 . . . . 5 (𝑁 ∈ On β†’ (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)))
1412, 13syl 17 . . . 4 (𝑁 ∈ Ο‰ β†’ (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)))
1511, 14eqtrd 2764 . . 3 (𝑁 ∈ Ο‰ β†’ ((βˆ… Sat βˆ…)β€˜suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)))
1615dmeqd 5895 . 2 (𝑁 ∈ Ο‰ β†’ dom ((βˆ… Sat βˆ…)β€˜suc 𝑁) = dom ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)))
17 elelsuc 6427 . . . . . . . 8 (𝑁 ∈ Ο‰ β†’ 𝑁 ∈ suc Ο‰)
18 satf0sucom 34819 . . . . . . . . 9 (𝑁 ∈ suc Ο‰ β†’ ((βˆ… Sat βˆ…)β€˜π‘) = (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘))
1918eqcomd 2730 . . . . . . . 8 (𝑁 ∈ suc Ο‰ β†’ (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘) = ((βˆ… Sat βˆ…)β€˜π‘))
2017, 19syl 17 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘) = ((βˆ… Sat βˆ…)β€˜π‘))
2120fveq2d 6885 . . . . . 6 (𝑁 ∈ Ο‰ β†’ ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)) = ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜((βˆ… Sat βˆ…)β€˜π‘)))
22 eqidd 2725 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ (𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})) = (𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})))
23 id 22 . . . . . . . . 9 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ 𝑓 = ((βˆ… Sat βˆ…)β€˜π‘))
24 rexeq 3313 . . . . . . . . . . . . 13 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ↔ βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£))))
2524orbi1d 913 . . . . . . . . . . . 12 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ ((βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)) ↔ (βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))
2625rexeqbi1dv 3326 . . . . . . . . . . 11 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ (βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)) ↔ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))
2726anbi2d 628 . . . . . . . . . 10 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ ((𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))) ↔ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))))
2827opabbidv 5204 . . . . . . . . 9 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} = {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})
2923, 28uneq12d 4156 . . . . . . . 8 (𝑓 = ((βˆ… Sat βˆ…)β€˜π‘) β†’ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}) = (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))
3029adantl 481 . . . . . . 7 ((𝑁 ∈ Ο‰ ∧ 𝑓 = ((βˆ… Sat βˆ…)β€˜π‘)) β†’ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}) = (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))
31 fvex 6894 . . . . . . . 8 ((βˆ… Sat βˆ…)β€˜π‘) ∈ V
3231a1i 11 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ ((βˆ… Sat βˆ…)β€˜π‘) ∈ V)
33 peano1 7872 . . . . . . . . . . . . 13 βˆ… ∈ Ο‰
34 eleq1 2813 . . . . . . . . . . . . 13 (𝑦 = βˆ… β†’ (𝑦 ∈ Ο‰ ↔ βˆ… ∈ Ο‰))
3533, 34mpbiri 258 . . . . . . . . . . . 12 (𝑦 = βˆ… β†’ 𝑦 ∈ Ο‰)
3635adantr 480 . . . . . . . . . . 11 ((𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))) β†’ 𝑦 ∈ Ο‰)
3736pm4.71ri 560 . . . . . . . . . 10 ((𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))) ↔ (𝑦 ∈ Ο‰ ∧ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))))
3837opabbii 5205 . . . . . . . . 9 {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} = {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))}
39 omex 9633 . . . . . . . . . . . 12 Ο‰ ∈ V
40 id 22 . . . . . . . . . . . . 13 (Ο‰ ∈ V β†’ Ο‰ ∈ V)
41 unab 4290 . . . . . . . . . . . . . . . . 17 ({π‘₯ ∣ βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£))} βˆͺ {π‘₯ ∣ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)}) = {π‘₯ ∣ (βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))}
4231abrexex 7942 . . . . . . . . . . . . . . . . . 18 {π‘₯ ∣ βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£))} ∈ V
4339abrexex 7942 . . . . . . . . . . . . . . . . . 18 {π‘₯ ∣ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)} ∈ V
4442, 43unex 7726 . . . . . . . . . . . . . . . . 17 ({π‘₯ ∣ βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£))} βˆͺ {π‘₯ ∣ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)}) ∈ V
4541, 44eqeltrri 2822 . . . . . . . . . . . . . . . 16 {π‘₯ ∣ (βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))} ∈ V
4645a1i 11 . . . . . . . . . . . . . . 15 (((Ο‰ ∈ V ∧ 𝑦 ∈ Ο‰) ∧ 𝑒 ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ {π‘₯ ∣ (βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))} ∈ V)
4746ralrimiva 3138 . . . . . . . . . . . . . 14 ((Ο‰ ∈ V ∧ 𝑦 ∈ Ο‰) β†’ βˆ€π‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘){π‘₯ ∣ (βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))} ∈ V)
48 abrexex2g 7944 . . . . . . . . . . . . . 14 ((((βˆ… Sat βˆ…)β€˜π‘) ∈ V ∧ βˆ€π‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘){π‘₯ ∣ (βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))} ∈ V) β†’ {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))} ∈ V)
4931, 47, 48sylancr 586 . . . . . . . . . . . . 13 ((Ο‰ ∈ V ∧ 𝑦 ∈ Ο‰) β†’ {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))} ∈ V)
5040, 49opabex3rd 7946 . . . . . . . . . . . 12 (Ο‰ ∈ V β†’ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} ∈ V)
5139, 50ax-mp 5 . . . . . . . . . . 11 {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} ∈ V
52 simpr 484 . . . . . . . . . . . . 13 ((𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))) β†’ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))
5352anim2i 616 . . . . . . . . . . . 12 ((𝑦 ∈ Ο‰ ∧ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))) β†’ (𝑦 ∈ Ο‰ ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))
5453ssopab2i 5540 . . . . . . . . . . 11 {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))} βŠ† {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}
5551, 54ssexi 5312 . . . . . . . . . 10 {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))} ∈ V
5655a1i 11 . . . . . . . . 9 (𝑁 ∈ Ο‰ β†’ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 ∈ Ο‰ ∧ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))} ∈ V)
5738, 56eqeltrid 2829 . . . . . . . 8 (𝑁 ∈ Ο‰ β†’ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} ∈ V)
58 unexg 7729 . . . . . . . 8 ((((βˆ… Sat βˆ…)β€˜π‘) ∈ V ∧ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} ∈ V) β†’ (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}) ∈ V)
5931, 57, 58sylancr 586 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}) ∈ V)
6022, 30, 32, 59fvmptd 6995 . . . . . 6 (𝑁 ∈ Ο‰ β†’ ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜((βˆ… Sat βˆ…)β€˜π‘)) = (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))
6121, 60eqtrd 2764 . . . . 5 (𝑁 ∈ Ο‰ β†’ ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)) = (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))
6261dmeqd 5895 . . . 4 (𝑁 ∈ Ο‰ β†’ dom ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)) = dom (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))
63 dmun 5900 . . . 4 dom (((βˆ… Sat βˆ…)β€˜π‘) βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}) = (dom ((βˆ… Sat βˆ…)β€˜π‘) βˆͺ dom {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})
6462, 63eqtrdi 2780 . . 3 (𝑁 ∈ Ο‰ β†’ dom ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)) = (dom ((βˆ… Sat βˆ…)β€˜π‘) βˆͺ dom {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))
65 fmlafv 34826 . . . . . 6 (𝑁 ∈ suc Ο‰ β†’ (Fmlaβ€˜π‘) = dom ((βˆ… Sat βˆ…)β€˜π‘))
6617, 65syl 17 . . . . 5 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜π‘) = dom ((βˆ… Sat βˆ…)β€˜π‘))
6766eqcomd 2730 . . . 4 (𝑁 ∈ Ο‰ β†’ dom ((βˆ… Sat βˆ…)β€˜π‘) = (Fmlaβ€˜π‘))
68 dmopab 5905 . . . . . 6 dom {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} = {π‘₯ ∣ βˆƒπ‘¦(𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}
6968a1i 11 . . . . 5 (𝑁 ∈ Ο‰ β†’ dom {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} = {π‘₯ ∣ βˆƒπ‘¦(𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})
70 0ex 5297 . . . . . . . 8 βˆ… ∈ V
7170isseti 3482 . . . . . . 7 βˆƒπ‘¦ 𝑦 = βˆ…
72 19.41v 1945 . . . . . . 7 (βˆƒπ‘¦(𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))) ↔ (βˆƒπ‘¦ 𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))))
7371, 72mpbiran 706 . . . . . 6 (βˆƒπ‘¦(𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))) ↔ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))
7473abbii 2794 . . . . 5 {π‘₯ ∣ βˆƒπ‘¦(𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} = {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))}
7569, 74eqtrdi 2780 . . . 4 (𝑁 ∈ Ο‰ β†’ dom {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))} = {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))})
7667, 75uneq12d 4156 . . 3 (𝑁 ∈ Ο‰ β†’ (dom ((βˆ… Sat βˆ…)β€˜π‘) βˆͺ dom {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))}))
7764, 76eqtrd 2764 . 2 (𝑁 ∈ Ο‰ β†’ dom ((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))}))β€˜(rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’)))})), {⟨π‘₯, π‘¦βŸ© ∣ (𝑦 = βˆ… ∧ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ π‘₯ = (π‘–βˆˆπ‘”π‘—))})β€˜π‘)) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))}))
789, 16, 773eqtrd 2768 1 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘£ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’))}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ wo 844   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2701  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466   βˆͺ cun 3938  βˆ…c0 4314  {copab 5200   ↦ cmpt 5221  dom cdm 5666  Oncon0 6354  suc csuc 6356  β€˜cfv 6533  (class class class)co 7401  Ο‰com 7848  1st c1st 7966  reccrdg 8404  βˆˆπ‘”cgoe 34779  βŠΌπ‘”cgna 34780  βˆ€π‘”cgol 34781   Sat csat 34782  Fmlacfmla 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-map 8817  df-sat 34789  df-fmla 34791
This theorem is referenced by:  fmlafvel  34831  fmlasuc  34832
  Copyright terms: Public domain W3C validator