Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc0 Structured version   Visualization version   GIF version

Theorem fmlasuc0 35352
Description: The valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 18-Sep-2023.)
Assertion
Ref Expression
fmlasuc0 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
Distinct variable groups:   𝑢,𝑁,𝑣,𝑥   𝑢,𝑖,𝑣,𝑥
Allowed substitution hint:   𝑁(𝑖)

Proof of Theorem fmlasuc0
Dummy variables 𝑓 𝑦 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmla 35313 . . 3 Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
2 fveq2 6920 . . . 4 (𝑛 = suc 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘suc 𝑁))
32dmeqd 5930 . . 3 (𝑛 = suc 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘suc 𝑁))
4 omsucelsucb 8514 . . . 4 (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)
54biimpi 216 . . 3 (𝑁 ∈ ω → suc 𝑁 ∈ suc ω)
6 fvex 6933 . . . . 5 ((∅ Sat ∅)‘suc 𝑁) ∈ V
76dmex 7949 . . . 4 dom ((∅ Sat ∅)‘suc 𝑁) ∈ V
87a1i 11 . . 3 (𝑁 ∈ ω → dom ((∅ Sat ∅)‘suc 𝑁) ∈ V)
91, 3, 5, 8fvmptd3 7052 . 2 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = dom ((∅ Sat ∅)‘suc 𝑁))
10 satf0sucom 35341 . . . . 5 (suc 𝑁 ∈ suc ω → ((∅ Sat ∅)‘suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁))
115, 10syl 17 . . . 4 (𝑁 ∈ ω → ((∅ Sat ∅)‘suc 𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁))
12 nnon 7909 . . . . 5 (𝑁 ∈ ω → 𝑁 ∈ On)
13 rdgsuc 8480 . . . . 5 (𝑁 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
1412, 13syl 17 . . . 4 (𝑁 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
1511, 14eqtrd 2780 . . 3 (𝑁 ∈ ω → ((∅ Sat ∅)‘suc 𝑁) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
1615dmeqd 5930 . 2 (𝑁 ∈ ω → dom ((∅ Sat ∅)‘suc 𝑁) = dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)))
17 elelsuc 6468 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ suc ω)
18 satf0sucom 35341 . . . . . . . . 9 (𝑁 ∈ suc ω → ((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁))
1918eqcomd 2746 . . . . . . . 8 (𝑁 ∈ suc ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁) = ((∅ Sat ∅)‘𝑁))
2017, 19syl 17 . . . . . . 7 (𝑁 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁) = ((∅ Sat ∅)‘𝑁))
2120fveq2d 6924 . . . . . 6 (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑁)))
22 eqidd 2741 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
23 id 22 . . . . . . . . 9 (𝑓 = ((∅ Sat ∅)‘𝑁) → 𝑓 = ((∅ Sat ∅)‘𝑁))
24 rexeq 3330 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑁) → (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
2524orbi1d 915 . . . . . . . . . . . 12 (𝑓 = ((∅ Sat ∅)‘𝑁) → ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
2625rexeqbi1dv 3347 . . . . . . . . . . 11 (𝑓 = ((∅ Sat ∅)‘𝑁) → (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
2726anbi2d 629 . . . . . . . . . 10 (𝑓 = ((∅ Sat ∅)‘𝑁) → ((𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
2827opabbidv 5232 . . . . . . . . 9 (𝑓 = ((∅ Sat ∅)‘𝑁) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
2923, 28uneq12d 4192 . . . . . . . 8 (𝑓 = ((∅ Sat ∅)‘𝑁) → (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
3029adantl 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑓 = ((∅ Sat ∅)‘𝑁)) → (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
31 fvex 6933 . . . . . . . 8 ((∅ Sat ∅)‘𝑁) ∈ V
3231a1i 11 . . . . . . 7 (𝑁 ∈ ω → ((∅ Sat ∅)‘𝑁) ∈ V)
33 peano1 7927 . . . . . . . . . . . . 13 ∅ ∈ ω
34 eleq1 2832 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
3533, 34mpbiri 258 . . . . . . . . . . . 12 (𝑦 = ∅ → 𝑦 ∈ ω)
3635adantr 480 . . . . . . . . . . 11 ((𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) → 𝑦 ∈ ω)
3736pm4.71ri 560 . . . . . . . . . 10 ((𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
3837opabbii 5233 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))}
39 omex 9712 . . . . . . . . . . . 12 ω ∈ V
40 id 22 . . . . . . . . . . . . 13 (ω ∈ V → ω ∈ V)
41 unab 4327 . . . . . . . . . . . . . . . . 17 ({𝑥 ∣ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∪ {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)}) = {𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}
4231abrexex 8003 . . . . . . . . . . . . . . . . . 18 {𝑥 ∣ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∈ V
4339abrexex 8003 . . . . . . . . . . . . . . . . . 18 {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)} ∈ V
4442, 43unex 7779 . . . . . . . . . . . . . . . . 17 ({𝑥 ∣ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∪ {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)}) ∈ V
4541, 44eqeltrri 2841 . . . . . . . . . . . . . . . 16 {𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V
4645a1i 11 . . . . . . . . . . . . . . 15 (((ω ∈ V ∧ 𝑦 ∈ ω) ∧ 𝑢 ∈ ((∅ Sat ∅)‘𝑁)) → {𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
4746ralrimiva 3152 . . . . . . . . . . . . . 14 ((ω ∈ V ∧ 𝑦 ∈ ω) → ∀𝑢 ∈ ((∅ Sat ∅)‘𝑁){𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
48 abrexex2g 8005 . . . . . . . . . . . . . 14 ((((∅ Sat ∅)‘𝑁) ∈ V ∧ ∀𝑢 ∈ ((∅ Sat ∅)‘𝑁){𝑥 ∣ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V) → {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
4931, 47, 48sylancr 586 . . . . . . . . . . . . 13 ((ω ∈ V ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ∈ V)
5040, 49opabex3rd 8007 . . . . . . . . . . . 12 (ω ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
5139, 50ax-mp 5 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V
52 simpr 484 . . . . . . . . . . . . 13 ((𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) → ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
5352anim2i 616 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))) → (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5453ssopab2i 5569 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
5551, 54ssexi 5340 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))} ∈ V
5655a1i 11 . . . . . . . . 9 (𝑁 ∈ ω → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))} ∈ V)
5738, 56eqeltrid 2848 . . . . . . . 8 (𝑁 ∈ ω → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
58 unexg 7778 . . . . . . . 8 ((((∅ Sat ∅)‘𝑁) ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V) → (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
5931, 57, 58sylancr 586 . . . . . . 7 (𝑁 ∈ ω → (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6022, 30, 32, 59fvmptd 7036 . . . . . 6 (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑁)) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6121, 60eqtrd 2780 . . . . 5 (𝑁 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6261dmeqd 5930 . . . 4 (𝑁 ∈ ω → dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = dom (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
63 dmun 5935 . . . 4 dom (((∅ Sat ∅)‘𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (dom ((∅ Sat ∅)‘𝑁) ∪ dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
6462, 63eqtrdi 2796 . . 3 (𝑁 ∈ ω → dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = (dom ((∅ Sat ∅)‘𝑁) ∪ dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
65 fmlafv 35348 . . . . . 6 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
6617, 65syl 17 . . . . 5 (𝑁 ∈ ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
6766eqcomd 2746 . . . 4 (𝑁 ∈ ω → dom ((∅ Sat ∅)‘𝑁) = (Fmla‘𝑁))
68 dmopab 5940 . . . . . 6 dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
6968a1i 11 . . . . 5 (𝑁 ∈ ω → dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
70 0ex 5325 . . . . . . . 8 ∅ ∈ V
7170isseti 3506 . . . . . . 7 𝑦 𝑦 = ∅
72 19.41v 1949 . . . . . . 7 (∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∃𝑦 𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
7371, 72mpbiran 708 . . . . . 6 (∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
7473abbii 2812 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}
7569, 74eqtrdi 2796 . . . 4 (𝑁 ∈ ω → dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})
7667, 75uneq12d 4192 . . 3 (𝑁 ∈ ω → (dom ((∅ Sat ∅)‘𝑁) ∪ dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7764, 76eqtrd 2780 . 2 (𝑁 ∈ ω → dom ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑁)) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
789, 16, 773eqtrd 2784 1 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cun 3974  c0 4352  {copab 5228  cmpt 5249  dom cdm 5700  Oncon0 6395  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  reccrdg 8465  𝑔cgoe 35301  𝑔cgna 35302  𝑔cgol 35303   Sat csat 35304  Fmlacfmla 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-sat 35311  df-fmla 35313
This theorem is referenced by:  fmlafvel  35353  fmlasuc  35354
  Copyright terms: Public domain W3C validator