Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc Structured version   Visualization version   GIF version

Theorem fmlasuc 35361
Description: The valid Godel formulas of height (𝑁 + 1), expressed by the valid Godel formulas of height 𝑁. (Contributed by AV, 20-Sep-2023.)
Assertion
Ref Expression
fmlasuc (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
Distinct variable group:   𝑢,𝑁,𝑣,𝑥,𝑖

Proof of Theorem fmlasuc
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmlasuc0 35359 . 2 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))}))
2 eqid 2729 . . . . . . . 8 (∅ Sat ∅) = (∅ Sat ∅)
32satf0op 35352 . . . . . . 7 (𝑁 ∈ ω → (𝑦 ∈ ((∅ Sat ∅)‘𝑁) ↔ ∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
4 fveq2 6826 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
54oveq2d 7369 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((1st𝑦)⊼𝑔(1st𝑧)) = ((1st𝑦)⊼𝑔(1st𝑤)))
65eqeq2d 2740 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ 𝑥 = ((1st𝑦)⊼𝑔(1st𝑤))))
76cbvrexvw 3208 . . . . . . . . 9 (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ ∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)))
87orbi1i 913 . . . . . . . 8 ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
9 fmlafvel 35360 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (𝑧 ∈ (Fmla‘𝑁) ↔ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
109biimprd 248 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁) → 𝑧 ∈ (Fmla‘𝑁)))
1110adantld 490 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → ((𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → 𝑧 ∈ (Fmla‘𝑁)))
1211imp 406 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → 𝑧 ∈ (Fmla‘𝑁))
13 vex 3442 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
14 0ex 5249 . . . . . . . . . . . . . . . 16 ∅ ∈ V
1513, 14op1std 7941 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, ∅⟩ → (1st𝑦) = 𝑧)
1615eleq1d 2813 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦) ∈ (Fmla‘𝑁) ↔ 𝑧 ∈ (Fmla‘𝑁)))
1716ad2antrl 728 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((1st𝑦) ∈ (Fmla‘𝑁) ↔ 𝑧 ∈ (Fmla‘𝑁)))
1812, 17mpbird 257 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (1st𝑦) ∈ (Fmla‘𝑁))
19183adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → (1st𝑦) ∈ (Fmla‘𝑁))
20 oveq1 7360 . . . . . . . . . . . . . . 15 (𝑢 = (1st𝑦) → (𝑢𝑔𝑣) = ((1st𝑦)⊼𝑔𝑣))
2120eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑦) → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑥 = ((1st𝑦)⊼𝑔𝑣)))
2221rexbidv 3153 . . . . . . . . . . . . 13 (𝑢 = (1st𝑦) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)))
23 eqidd 2730 . . . . . . . . . . . . . . . 16 (𝑢 = (1st𝑦) → 𝑖 = 𝑖)
24 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = (1st𝑦) → 𝑢 = (1st𝑦))
2523, 24goaleq12d 35326 . . . . . . . . . . . . . . 15 (𝑢 = (1st𝑦) → ∀𝑔𝑖𝑢 = ∀𝑔𝑖(1st𝑦))
2625eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑦) → (𝑥 = ∀𝑔𝑖𝑢𝑥 = ∀𝑔𝑖(1st𝑦)))
2726rexbidv 3153 . . . . . . . . . . . . 13 (𝑢 = (1st𝑦) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
2822, 27orbi12d 918 . . . . . . . . . . . 12 (𝑢 = (1st𝑦) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
2928adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) ∧ 𝑢 = (1st𝑦)) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
302satf0op 35352 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ω → (𝑤 ∈ ((∅ Sat ∅)‘𝑁) ↔ ∃𝑦(𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
31 fmlafvel 35360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → (𝑦 ∈ (Fmla‘𝑁) ↔ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
3231biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ω → (⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁) → 𝑦 ∈ (Fmla‘𝑁)))
3332adantld 490 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ω → ((𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → 𝑦 ∈ (Fmla‘𝑁)))
3433imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → 𝑦 ∈ (Fmla‘𝑁))
35 vex 3442 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
3635, 14op1std 7941 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ⟨𝑦, ∅⟩ → (1st𝑤) = 𝑦)
3736eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ⟨𝑦, ∅⟩ → ((1st𝑤) ∈ (Fmla‘𝑁) ↔ 𝑦 ∈ (Fmla‘𝑁)))
3837ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((1st𝑤) ∈ (Fmla‘𝑁) ↔ 𝑦 ∈ (Fmla‘𝑁)))
3934, 38mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (1st𝑤) ∈ (Fmla‘𝑁))
4039adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → (1st𝑤) ∈ (Fmla‘𝑁))
41 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (1st𝑤) → (𝑧𝑔𝑣) = (𝑧𝑔(1st𝑤)))
4241eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (1st𝑤) → (𝑥 = (𝑧𝑔𝑣) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
4342adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) ∧ 𝑣 = (1st𝑤)) → (𝑥 = (𝑧𝑔𝑣) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
44 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → 𝑥 = (𝑧𝑔(1st𝑤)))
4540, 43, 44rspcedvd 3581 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))
4645exp31 419 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ω → ((𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4746exlimdv 1933 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ω → (∃𝑦(𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4830, 47sylbid 240 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (𝑤 ∈ ((∅ Sat ∅)‘𝑁) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4948rexlimdv 3128 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5049adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5115oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦)⊼𝑔(1st𝑤)) = (𝑧𝑔(1st𝑤)))
5251eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
5352rexbidv 3153 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, ∅⟩ → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ↔ ∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤))))
5415oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦)⊼𝑔𝑣) = (𝑧𝑔𝑣))
5554eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔𝑣) ↔ 𝑥 = (𝑧𝑔𝑣)))
5655rexbidv 3153 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, ∅⟩ → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5753, 56imbi12d 344 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, ∅⟩ → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
5857ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
5950, 58mpbird 257 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)))
6059orim1d 967 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
61603impia 1117 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
6219, 29, 61rspcedvd 3581 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
63623exp 1119 . . . . . . . . 9 (𝑁 ∈ ω → ((𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
6463exlimdv 1933 . . . . . . . 8 (𝑁 ∈ ω → (∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
658, 64syl7bi 255 . . . . . . 7 (𝑁 ∈ ω → (∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
663, 65sylbid 240 . . . . . 6 (𝑁 ∈ ω → (𝑦 ∈ ((∅ Sat ∅)‘𝑁) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
6766rexlimdv 3128 . . . . 5 (𝑁 ∈ ω → (∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
68 fmlafvel 35360 . . . . . . . . 9 (𝑁 ∈ ω → (𝑢 ∈ (Fmla‘𝑁) ↔ ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
6968biimpa 476 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
7069adantr 480 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
71 vex 3442 . . . . . . . . . . . . 13 𝑢 ∈ V
7271, 14op1std 7941 . . . . . . . . . . . 12 (𝑦 = ⟨𝑢, ∅⟩ → (1st𝑦) = 𝑢)
7372oveq1d 7368 . . . . . . . . . . 11 (𝑦 = ⟨𝑢, ∅⟩ → ((1st𝑦)⊼𝑔(1st𝑧)) = (𝑢𝑔(1st𝑧)))
7473eqeq2d 2740 . . . . . . . . . 10 (𝑦 = ⟨𝑢, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔(1st𝑧))))
7574rexbidv 3153 . . . . . . . . 9 (𝑦 = ⟨𝑢, ∅⟩ → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧))))
76 eqidd 2730 . . . . . . . . . . . 12 (𝑦 = ⟨𝑢, ∅⟩ → 𝑖 = 𝑖)
7776, 72goaleq12d 35326 . . . . . . . . . . 11 (𝑦 = ⟨𝑢, ∅⟩ → ∀𝑔𝑖(1st𝑦) = ∀𝑔𝑖𝑢)
7877eqeq2d 2740 . . . . . . . . . 10 (𝑦 = ⟨𝑢, ∅⟩ → (𝑥 = ∀𝑔𝑖(1st𝑦) ↔ 𝑥 = ∀𝑔𝑖𝑢))
7978rexbidv 3153 . . . . . . . . 9 (𝑦 = ⟨𝑢, ∅⟩ → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
8075, 79orbi12d 918 . . . . . . . 8 (𝑦 = ⟨𝑢, ∅⟩ → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
8180adantl 481 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ∧ 𝑦 = ⟨𝑢, ∅⟩) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
82 fmlafvel 35360 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (𝑣 ∈ (Fmla‘𝑁) ↔ ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8382biimpd 229 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (𝑣 ∈ (Fmla‘𝑁) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8483adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (𝑣 ∈ (Fmla‘𝑁) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8584imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
8685adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
87 vex 3442 . . . . . . . . . . . . . . 15 𝑣 ∈ V
8887, 14op1std 7941 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑣, ∅⟩ → (1st𝑧) = 𝑣)
8988oveq2d 7369 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑣, ∅⟩ → (𝑢𝑔(1st𝑧)) = (𝑢𝑔𝑣))
9089eqeq2d 2740 . . . . . . . . . . . 12 (𝑧 = ⟨𝑣, ∅⟩ → (𝑥 = (𝑢𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔𝑣)))
9190adantl 481 . . . . . . . . . . 11 (((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) ∧ 𝑧 = ⟨𝑣, ∅⟩) → (𝑥 = (𝑢𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔𝑣)))
92 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → 𝑥 = (𝑢𝑔𝑣))
9386, 91, 92rspcedvd 3581 . . . . . . . . . 10 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)))
9493rexlimdva2 3132 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) → ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧))))
9594orim1d 967 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
9695imp 406 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
9770, 81, 96rspcedvd 3581 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
9897rexlimdva2 3132 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) → ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
9967, 98impbid 212 . . . 4 (𝑁 ∈ ω → (∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
10099abbidv 2795 . . 3 (𝑁 ∈ ω → {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))} = {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
101100uneq2d 4121 . 2 (𝑁 ∈ ω → ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))}) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
1021, 101eqtrd 2764 1 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  cun 3903  c0 4286  cop 4585  suc csuc 6313  cfv 6486  (class class class)co 7353  ωcom 7806  1st c1st 7929  𝑔cgna 35309  𝑔cgol 35310   Sat csat 35311  Fmlacfmla 35312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-map 8762  df-goel 35315  df-goal 35317  df-sat 35318  df-fmla 35320
This theorem is referenced by:  fmla1  35362  isfmlasuc  35363  fmlasssuc  35364  fmlaomn0  35365
  Copyright terms: Public domain W3C validator