Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc Structured version   Visualization version   GIF version

Theorem fmlasuc 34675
Description: The valid Godel formulas of height (𝑁 + 1), expressed by the valid Godel formulas of height 𝑁. (Contributed by AV, 20-Sep-2023.)
Assertion
Ref Expression
fmlasuc (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)}))
Distinct variable group:   𝑒,𝑁,𝑣,π‘₯,𝑖

Proof of Theorem fmlasuc
Dummy variables 𝑦 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmlasuc0 34673 . 2 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))}))
2 eqid 2730 . . . . . . . 8 (βˆ… Sat βˆ…) = (βˆ… Sat βˆ…)
32satf0op 34666 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ (𝑦 ∈ ((βˆ… Sat βˆ…)β€˜π‘) ↔ βˆƒπ‘§(𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))))
4 fveq2 6890 . . . . . . . . . . . 12 (𝑧 = 𝑀 β†’ (1st β€˜π‘§) = (1st β€˜π‘€))
54oveq2d 7427 . . . . . . . . . . 11 (𝑧 = 𝑀 β†’ ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)))
65eqeq2d 2741 . . . . . . . . . 10 (𝑧 = 𝑀 β†’ (π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ↔ π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€))))
76cbvrexvw 3233 . . . . . . . . 9 (βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ↔ βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)))
87orbi1i 910 . . . . . . . 8 ((βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) ↔ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)))
9 fmlafvel 34674 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Ο‰ β†’ (𝑧 ∈ (Fmlaβ€˜π‘) ↔ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)))
109biimprd 247 . . . . . . . . . . . . . . 15 (𝑁 ∈ Ο‰ β†’ (βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘) β†’ 𝑧 ∈ (Fmlaβ€˜π‘)))
1110adantld 489 . . . . . . . . . . . . . 14 (𝑁 ∈ Ο‰ β†’ ((𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ 𝑧 ∈ (Fmlaβ€˜π‘)))
1211imp 405 . . . . . . . . . . . . 13 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ 𝑧 ∈ (Fmlaβ€˜π‘))
13 vex 3476 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
14 0ex 5306 . . . . . . . . . . . . . . . 16 βˆ… ∈ V
1513, 14op1std 7987 . . . . . . . . . . . . . . 15 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ (1st β€˜π‘¦) = 𝑧)
1615eleq1d 2816 . . . . . . . . . . . . . 14 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ ((1st β€˜π‘¦) ∈ (Fmlaβ€˜π‘) ↔ 𝑧 ∈ (Fmlaβ€˜π‘)))
1716ad2antrl 724 . . . . . . . . . . . . 13 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ ((1st β€˜π‘¦) ∈ (Fmlaβ€˜π‘) ↔ 𝑧 ∈ (Fmlaβ€˜π‘)))
1812, 17mpbird 256 . . . . . . . . . . . 12 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ (1st β€˜π‘¦) ∈ (Fmlaβ€˜π‘))
19183adant3 1130 . . . . . . . . . . 11 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) ∧ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))) β†’ (1st β€˜π‘¦) ∈ (Fmlaβ€˜π‘))
20 oveq1 7418 . . . . . . . . . . . . . . 15 (𝑒 = (1st β€˜π‘¦) β†’ (π‘’βŠΌπ‘”π‘£) = ((1st β€˜π‘¦)βŠΌπ‘”π‘£))
2120eqeq2d 2741 . . . . . . . . . . . . . 14 (𝑒 = (1st β€˜π‘¦) β†’ (π‘₯ = (π‘’βŠΌπ‘”π‘£) ↔ π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£)))
2221rexbidv 3176 . . . . . . . . . . . . 13 (𝑒 = (1st β€˜π‘¦) β†’ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ↔ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£)))
23 eqidd 2731 . . . . . . . . . . . . . . . 16 (𝑒 = (1st β€˜π‘¦) β†’ 𝑖 = 𝑖)
24 id 22 . . . . . . . . . . . . . . . 16 (𝑒 = (1st β€˜π‘¦) β†’ 𝑒 = (1st β€˜π‘¦))
2523, 24goaleq12d 34640 . . . . . . . . . . . . . . 15 (𝑒 = (1st β€˜π‘¦) β†’ βˆ€π‘”π‘–π‘’ = βˆ€π‘”π‘–(1st β€˜π‘¦))
2625eqeq2d 2741 . . . . . . . . . . . . . 14 (𝑒 = (1st β€˜π‘¦) β†’ (π‘₯ = βˆ€π‘”π‘–π‘’ ↔ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)))
2726rexbidv 3176 . . . . . . . . . . . . 13 (𝑒 = (1st β€˜π‘¦) β†’ (βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’ ↔ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)))
2822, 27orbi12d 915 . . . . . . . . . . . 12 (𝑒 = (1st β€˜π‘¦) β†’ ((βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’) ↔ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))))
2928adantl 480 . . . . . . . . . . 11 (((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) ∧ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))) ∧ 𝑒 = (1st β€˜π‘¦)) β†’ ((βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’) ↔ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))))
302satf0op 34666 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Ο‰ β†’ (𝑀 ∈ ((βˆ… Sat βˆ…)β€˜π‘) ↔ βˆƒπ‘¦(𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))))
31 fmlafvel 34674 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Ο‰ β†’ (𝑦 ∈ (Fmlaβ€˜π‘) ↔ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)))
3231biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ Ο‰ β†’ (βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘) β†’ 𝑦 ∈ (Fmlaβ€˜π‘)))
3332adantld 489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ Ο‰ β†’ ((𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ 𝑦 ∈ (Fmlaβ€˜π‘)))
3433imp 405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ 𝑦 ∈ (Fmlaβ€˜π‘))
35 vex 3476 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
3635, 14op1std 7987 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 = βŸ¨π‘¦, βˆ…βŸ© β†’ (1st β€˜π‘€) = 𝑦)
3736eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = βŸ¨π‘¦, βˆ…βŸ© β†’ ((1st β€˜π‘€) ∈ (Fmlaβ€˜π‘) ↔ 𝑦 ∈ (Fmlaβ€˜π‘)))
3837ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ ((1st β€˜π‘€) ∈ (Fmlaβ€˜π‘) ↔ 𝑦 ∈ (Fmlaβ€˜π‘)))
3934, 38mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ (1st β€˜π‘€) ∈ (Fmlaβ€˜π‘))
4039adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) ∧ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))) β†’ (1st β€˜π‘€) ∈ (Fmlaβ€˜π‘))
41 oveq2 7419 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (1st β€˜π‘€) β†’ (π‘§βŠΌπ‘”π‘£) = (π‘§βŠΌπ‘”(1st β€˜π‘€)))
4241eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (1st β€˜π‘€) β†’ (π‘₯ = (π‘§βŠΌπ‘”π‘£) ↔ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))))
4342adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) ∧ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))) ∧ 𝑣 = (1st β€˜π‘€)) β†’ (π‘₯ = (π‘§βŠΌπ‘”π‘£) ↔ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))))
44 simpr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) ∧ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))) β†’ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)))
4540, 43, 44rspcedvd 3613 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Ο‰ ∧ (𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) ∧ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£))
4645exp31 418 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ Ο‰ β†’ ((𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ (π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£))))
4746exlimdv 1934 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘¦(𝑀 = βŸ¨π‘¦, βˆ…βŸ© ∧ βŸ¨π‘¦, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ (π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£))))
4830, 47sylbid 239 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Ο‰ β†’ (𝑀 ∈ ((βˆ… Sat βˆ…)β€˜π‘) β†’ (π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£))))
4948rexlimdv 3151 . . . . . . . . . . . . . . 15 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£)))
5049adantr 479 . . . . . . . . . . . . . 14 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£)))
5115oveq1d 7426 . . . . . . . . . . . . . . . . . 18 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) = (π‘§βŠΌπ‘”(1st β€˜π‘€)))
5251eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ (π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ↔ π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))))
5352rexbidv 3176 . . . . . . . . . . . . . . . 16 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ↔ βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€))))
5415oveq1d 7426 . . . . . . . . . . . . . . . . . 18 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ ((1st β€˜π‘¦)βŠΌπ‘”π‘£) = (π‘§βŠΌπ‘”π‘£))
5554eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ (π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£) ↔ π‘₯ = (π‘§βŠΌπ‘”π‘£)))
5655rexbidv 3176 . . . . . . . . . . . . . . . 16 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£) ↔ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£)))
5753, 56imbi12d 343 . . . . . . . . . . . . . . 15 (𝑦 = βŸ¨π‘§, βˆ…βŸ© β†’ ((βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£)) ↔ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£))))
5857ad2antrl 724 . . . . . . . . . . . . . 14 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ ((βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£)) ↔ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘§βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘§βŠΌπ‘”π‘£))))
5950, 58mpbird 256 . . . . . . . . . . . . 13 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) β†’ βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£)))
6059orim1d 962 . . . . . . . . . . . 12 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))) β†’ ((βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) β†’ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))))
61603impia 1115 . . . . . . . . . . 11 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) ∧ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))) β†’ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)))
6219, 29, 61rspcedvd 3613 . . . . . . . . . 10 ((𝑁 ∈ Ο‰ ∧ (𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) ∧ (βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))) β†’ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))
63623exp 1117 . . . . . . . . 9 (𝑁 ∈ Ο‰ β†’ ((𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ ((βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) β†’ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))))
6463exlimdv 1934 . . . . . . . 8 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘§(𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ ((βˆƒπ‘€ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘€)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) β†’ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))))
658, 64syl7bi 254 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘§(𝑦 = βŸ¨π‘§, βˆ…βŸ© ∧ βŸ¨π‘§, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)) β†’ ((βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) β†’ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))))
663, 65sylbid 239 . . . . . 6 (𝑁 ∈ Ο‰ β†’ (𝑦 ∈ ((βˆ… Sat βˆ…)β€˜π‘) β†’ ((βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) β†’ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))))
6766rexlimdv 3151 . . . . 5 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) β†’ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)))
68 fmlafvel 34674 . . . . . . . . 9 (𝑁 ∈ Ο‰ β†’ (𝑒 ∈ (Fmlaβ€˜π‘) ↔ βŸ¨π‘’, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)))
6968biimpa 475 . . . . . . . 8 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) β†’ βŸ¨π‘’, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))
7069adantr 479 . . . . . . 7 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)) β†’ βŸ¨π‘’, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))
71 vex 3476 . . . . . . . . . . . . 13 𝑒 ∈ V
7271, 14op1std 7987 . . . . . . . . . . . 12 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ (1st β€˜π‘¦) = 𝑒)
7372oveq1d 7426 . . . . . . . . . . 11 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) = (π‘’βŠΌπ‘”(1st β€˜π‘§)))
7473eqeq2d 2741 . . . . . . . . . 10 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ (π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ↔ π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§))))
7574rexbidv 3176 . . . . . . . . 9 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ (βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ↔ βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§))))
76 eqidd 2731 . . . . . . . . . . . 12 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ 𝑖 = 𝑖)
7776, 72goaleq12d 34640 . . . . . . . . . . 11 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ βˆ€π‘”π‘–(1st β€˜π‘¦) = βˆ€π‘”π‘–π‘’)
7877eqeq2d 2741 . . . . . . . . . 10 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ (π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦) ↔ π‘₯ = βˆ€π‘”π‘–π‘’))
7978rexbidv 3176 . . . . . . . . 9 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ (βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦) ↔ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))
8075, 79orbi12d 915 . . . . . . . 8 (𝑦 = βŸ¨π‘’, βˆ…βŸ© β†’ ((βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) ↔ (βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)))
8180adantl 480 . . . . . . 7 ((((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)) ∧ 𝑦 = βŸ¨π‘’, βˆ…βŸ©) β†’ ((βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) ↔ (βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)))
82 fmlafvel 34674 . . . . . . . . . . . . . . 15 (𝑁 ∈ Ο‰ β†’ (𝑣 ∈ (Fmlaβ€˜π‘) ↔ βŸ¨π‘£, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)))
8382biimpd 228 . . . . . . . . . . . . . 14 (𝑁 ∈ Ο‰ β†’ (𝑣 ∈ (Fmlaβ€˜π‘) β†’ βŸ¨π‘£, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)))
8483adantr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) β†’ (𝑣 ∈ (Fmlaβ€˜π‘) β†’ βŸ¨π‘£, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘)))
8584imp 405 . . . . . . . . . . . 12 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ 𝑣 ∈ (Fmlaβ€˜π‘)) β†’ βŸ¨π‘£, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))
8685adantr 479 . . . . . . . . . . 11 ((((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ 𝑣 ∈ (Fmlaβ€˜π‘)) ∧ π‘₯ = (π‘’βŠΌπ‘”π‘£)) β†’ βŸ¨π‘£, βˆ…βŸ© ∈ ((βˆ… Sat βˆ…)β€˜π‘))
87 vex 3476 . . . . . . . . . . . . . . 15 𝑣 ∈ V
8887, 14op1std 7987 . . . . . . . . . . . . . 14 (𝑧 = βŸ¨π‘£, βˆ…βŸ© β†’ (1st β€˜π‘§) = 𝑣)
8988oveq2d 7427 . . . . . . . . . . . . 13 (𝑧 = βŸ¨π‘£, βˆ…βŸ© β†’ (π‘’βŠΌπ‘”(1st β€˜π‘§)) = (π‘’βŠΌπ‘”π‘£))
9089eqeq2d 2741 . . . . . . . . . . . 12 (𝑧 = βŸ¨π‘£, βˆ…βŸ© β†’ (π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)) ↔ π‘₯ = (π‘’βŠΌπ‘”π‘£)))
9190adantl 480 . . . . . . . . . . 11 (((((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ 𝑣 ∈ (Fmlaβ€˜π‘)) ∧ π‘₯ = (π‘’βŠΌπ‘”π‘£)) ∧ 𝑧 = βŸ¨π‘£, βˆ…βŸ©) β†’ (π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)) ↔ π‘₯ = (π‘’βŠΌπ‘”π‘£)))
92 simpr 483 . . . . . . . . . . 11 ((((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ 𝑣 ∈ (Fmlaβ€˜π‘)) ∧ π‘₯ = (π‘’βŠΌπ‘”π‘£)) β†’ π‘₯ = (π‘’βŠΌπ‘”π‘£))
9386, 91, 92rspcedvd 3613 . . . . . . . . . 10 ((((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ 𝑣 ∈ (Fmlaβ€˜π‘)) ∧ π‘₯ = (π‘’βŠΌπ‘”π‘£)) β†’ βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)))
9493rexlimdva2 3155 . . . . . . . . 9 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) β†’ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) β†’ βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§))))
9594orim1d 962 . . . . . . . 8 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) β†’ ((βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’) β†’ (βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)))
9695imp 405 . . . . . . 7 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)) β†’ (βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = (π‘’βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’))
9770, 81, 96rspcedvd 3613 . . . . . 6 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜π‘)) ∧ (βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)) β†’ βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)))
9897rexlimdva2 3155 . . . . 5 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’) β†’ βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))))
9967, 98impbid 211 . . . 4 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦)) ↔ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)))
10099abbidv 2799 . . 3 (𝑁 ∈ Ο‰ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))} = {π‘₯ ∣ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)})
101100uneq2d 4162 . 2 (𝑁 ∈ Ο‰ β†’ ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘¦ ∈ ((βˆ… Sat βˆ…)β€˜π‘)(βˆƒπ‘§ ∈ ((βˆ… Sat βˆ…)β€˜π‘)π‘₯ = ((1st β€˜π‘¦)βŠΌπ‘”(1st β€˜π‘§)) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘¦))}) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)}))
1021, 101eqtrd 2770 1 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) = ((Fmlaβ€˜π‘) βˆͺ {π‘₯ ∣ βˆƒπ‘’ ∈ (Fmlaβ€˜π‘)(βˆƒπ‘£ ∈ (Fmlaβ€˜π‘)π‘₯ = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ π‘₯ = βˆ€π‘”π‘–π‘’)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∧ w3a 1085   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  {cab 2707  βˆƒwrex 3068   βˆͺ cun 3945  βˆ…c0 4321  βŸ¨cop 4633  suc csuc 6365  β€˜cfv 6542  (class class class)co 7411  Ο‰com 7857  1st c1st 7975  βŠΌπ‘”cgna 34623  βˆ€π‘”cgol 34624   Sat csat 34625  Fmlacfmla 34626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-map 8824  df-goel 34629  df-goal 34631  df-sat 34632  df-fmla 34634
This theorem is referenced by:  fmla1  34676  isfmlasuc  34677  fmlasssuc  34678  fmlaomn0  34679
  Copyright terms: Public domain W3C validator