Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc Structured version   Visualization version   GIF version

Theorem fmlasuc 35354
Description: The valid Godel formulas of height (𝑁 + 1), expressed by the valid Godel formulas of height 𝑁. (Contributed by AV, 20-Sep-2023.)
Assertion
Ref Expression
fmlasuc (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
Distinct variable group:   𝑢,𝑁,𝑣,𝑥,𝑖

Proof of Theorem fmlasuc
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmlasuc0 35352 . 2 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))}))
2 eqid 2740 . . . . . . . 8 (∅ Sat ∅) = (∅ Sat ∅)
32satf0op 35345 . . . . . . 7 (𝑁 ∈ ω → (𝑦 ∈ ((∅ Sat ∅)‘𝑁) ↔ ∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
4 fveq2 6920 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
54oveq2d 7464 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((1st𝑦)⊼𝑔(1st𝑧)) = ((1st𝑦)⊼𝑔(1st𝑤)))
65eqeq2d 2751 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ 𝑥 = ((1st𝑦)⊼𝑔(1st𝑤))))
76cbvrexvw 3244 . . . . . . . . 9 (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ ∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)))
87orbi1i 912 . . . . . . . 8 ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
9 fmlafvel 35353 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (𝑧 ∈ (Fmla‘𝑁) ↔ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
109biimprd 248 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁) → 𝑧 ∈ (Fmla‘𝑁)))
1110adantld 490 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → ((𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → 𝑧 ∈ (Fmla‘𝑁)))
1211imp 406 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → 𝑧 ∈ (Fmla‘𝑁))
13 vex 3492 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
14 0ex 5325 . . . . . . . . . . . . . . . 16 ∅ ∈ V
1513, 14op1std 8040 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, ∅⟩ → (1st𝑦) = 𝑧)
1615eleq1d 2829 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦) ∈ (Fmla‘𝑁) ↔ 𝑧 ∈ (Fmla‘𝑁)))
1716ad2antrl 727 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((1st𝑦) ∈ (Fmla‘𝑁) ↔ 𝑧 ∈ (Fmla‘𝑁)))
1812, 17mpbird 257 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (1st𝑦) ∈ (Fmla‘𝑁))
19183adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → (1st𝑦) ∈ (Fmla‘𝑁))
20 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑢 = (1st𝑦) → (𝑢𝑔𝑣) = ((1st𝑦)⊼𝑔𝑣))
2120eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑦) → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑥 = ((1st𝑦)⊼𝑔𝑣)))
2221rexbidv 3185 . . . . . . . . . . . . 13 (𝑢 = (1st𝑦) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)))
23 eqidd 2741 . . . . . . . . . . . . . . . 16 (𝑢 = (1st𝑦) → 𝑖 = 𝑖)
24 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = (1st𝑦) → 𝑢 = (1st𝑦))
2523, 24goaleq12d 35319 . . . . . . . . . . . . . . 15 (𝑢 = (1st𝑦) → ∀𝑔𝑖𝑢 = ∀𝑔𝑖(1st𝑦))
2625eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑦) → (𝑥 = ∀𝑔𝑖𝑢𝑥 = ∀𝑔𝑖(1st𝑦)))
2726rexbidv 3185 . . . . . . . . . . . . 13 (𝑢 = (1st𝑦) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
2822, 27orbi12d 917 . . . . . . . . . . . 12 (𝑢 = (1st𝑦) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
2928adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) ∧ 𝑢 = (1st𝑦)) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
302satf0op 35345 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ω → (𝑤 ∈ ((∅ Sat ∅)‘𝑁) ↔ ∃𝑦(𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
31 fmlafvel 35353 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → (𝑦 ∈ (Fmla‘𝑁) ↔ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
3231biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ω → (⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁) → 𝑦 ∈ (Fmla‘𝑁)))
3332adantld 490 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ω → ((𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → 𝑦 ∈ (Fmla‘𝑁)))
3433imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → 𝑦 ∈ (Fmla‘𝑁))
35 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
3635, 14op1std 8040 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ⟨𝑦, ∅⟩ → (1st𝑤) = 𝑦)
3736eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ⟨𝑦, ∅⟩ → ((1st𝑤) ∈ (Fmla‘𝑁) ↔ 𝑦 ∈ (Fmla‘𝑁)))
3837ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((1st𝑤) ∈ (Fmla‘𝑁) ↔ 𝑦 ∈ (Fmla‘𝑁)))
3934, 38mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (1st𝑤) ∈ (Fmla‘𝑁))
4039adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → (1st𝑤) ∈ (Fmla‘𝑁))
41 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (1st𝑤) → (𝑧𝑔𝑣) = (𝑧𝑔(1st𝑤)))
4241eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (1st𝑤) → (𝑥 = (𝑧𝑔𝑣) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
4342adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) ∧ 𝑣 = (1st𝑤)) → (𝑥 = (𝑧𝑔𝑣) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
44 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → 𝑥 = (𝑧𝑔(1st𝑤)))
4540, 43, 44rspcedvd 3637 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))
4645exp31 419 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ω → ((𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4746exlimdv 1932 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ω → (∃𝑦(𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4830, 47sylbid 240 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (𝑤 ∈ ((∅ Sat ∅)‘𝑁) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4948rexlimdv 3159 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5049adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5115oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦)⊼𝑔(1st𝑤)) = (𝑧𝑔(1st𝑤)))
5251eqeq2d 2751 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
5352rexbidv 3185 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, ∅⟩ → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ↔ ∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤))))
5415oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦)⊼𝑔𝑣) = (𝑧𝑔𝑣))
5554eqeq2d 2751 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔𝑣) ↔ 𝑥 = (𝑧𝑔𝑣)))
5655rexbidv 3185 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, ∅⟩ → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5753, 56imbi12d 344 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, ∅⟩ → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
5857ad2antrl 727 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
5950, 58mpbird 257 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)))
6059orim1d 966 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
61603impia 1117 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
6219, 29, 61rspcedvd 3637 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
63623exp 1119 . . . . . . . . 9 (𝑁 ∈ ω → ((𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
6463exlimdv 1932 . . . . . . . 8 (𝑁 ∈ ω → (∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
658, 64syl7bi 255 . . . . . . 7 (𝑁 ∈ ω → (∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
663, 65sylbid 240 . . . . . 6 (𝑁 ∈ ω → (𝑦 ∈ ((∅ Sat ∅)‘𝑁) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
6766rexlimdv 3159 . . . . 5 (𝑁 ∈ ω → (∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
68 fmlafvel 35353 . . . . . . . . 9 (𝑁 ∈ ω → (𝑢 ∈ (Fmla‘𝑁) ↔ ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
6968biimpa 476 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
7069adantr 480 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
71 vex 3492 . . . . . . . . . . . . 13 𝑢 ∈ V
7271, 14op1std 8040 . . . . . . . . . . . 12 (𝑦 = ⟨𝑢, ∅⟩ → (1st𝑦) = 𝑢)
7372oveq1d 7463 . . . . . . . . . . 11 (𝑦 = ⟨𝑢, ∅⟩ → ((1st𝑦)⊼𝑔(1st𝑧)) = (𝑢𝑔(1st𝑧)))
7473eqeq2d 2751 . . . . . . . . . 10 (𝑦 = ⟨𝑢, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔(1st𝑧))))
7574rexbidv 3185 . . . . . . . . 9 (𝑦 = ⟨𝑢, ∅⟩ → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧))))
76 eqidd 2741 . . . . . . . . . . . 12 (𝑦 = ⟨𝑢, ∅⟩ → 𝑖 = 𝑖)
7776, 72goaleq12d 35319 . . . . . . . . . . 11 (𝑦 = ⟨𝑢, ∅⟩ → ∀𝑔𝑖(1st𝑦) = ∀𝑔𝑖𝑢)
7877eqeq2d 2751 . . . . . . . . . 10 (𝑦 = ⟨𝑢, ∅⟩ → (𝑥 = ∀𝑔𝑖(1st𝑦) ↔ 𝑥 = ∀𝑔𝑖𝑢))
7978rexbidv 3185 . . . . . . . . 9 (𝑦 = ⟨𝑢, ∅⟩ → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
8075, 79orbi12d 917 . . . . . . . 8 (𝑦 = ⟨𝑢, ∅⟩ → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
8180adantl 481 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ∧ 𝑦 = ⟨𝑢, ∅⟩) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
82 fmlafvel 35353 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (𝑣 ∈ (Fmla‘𝑁) ↔ ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8382biimpd 229 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (𝑣 ∈ (Fmla‘𝑁) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8483adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (𝑣 ∈ (Fmla‘𝑁) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8584imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
8685adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
87 vex 3492 . . . . . . . . . . . . . . 15 𝑣 ∈ V
8887, 14op1std 8040 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑣, ∅⟩ → (1st𝑧) = 𝑣)
8988oveq2d 7464 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑣, ∅⟩ → (𝑢𝑔(1st𝑧)) = (𝑢𝑔𝑣))
9089eqeq2d 2751 . . . . . . . . . . . 12 (𝑧 = ⟨𝑣, ∅⟩ → (𝑥 = (𝑢𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔𝑣)))
9190adantl 481 . . . . . . . . . . 11 (((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) ∧ 𝑧 = ⟨𝑣, ∅⟩) → (𝑥 = (𝑢𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔𝑣)))
92 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → 𝑥 = (𝑢𝑔𝑣))
9386, 91, 92rspcedvd 3637 . . . . . . . . . 10 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)))
9493rexlimdva2 3163 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) → ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧))))
9594orim1d 966 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
9695imp 406 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
9770, 81, 96rspcedvd 3637 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
9897rexlimdva2 3163 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) → ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
9967, 98impbid 212 . . . 4 (𝑁 ∈ ω → (∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
10099abbidv 2811 . . 3 (𝑁 ∈ ω → {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))} = {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
101100uneq2d 4191 . 2 (𝑁 ∈ ω → ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))}) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
1021, 101eqtrd 2780 1 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  cun 3974  c0 4352  cop 4654  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  𝑔cgna 35302  𝑔cgol 35303   Sat csat 35304  Fmlacfmla 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-goel 35308  df-goal 35310  df-sat 35311  df-fmla 35313
This theorem is referenced by:  fmla1  35355  isfmlasuc  35356  fmlasssuc  35357  fmlaomn0  35358
  Copyright terms: Public domain W3C validator