Step | Hyp | Ref
| Expression |
1 | | fmlasuc0 34673 |
. 2
β’ (π β Ο β
(Fmlaβsuc π) =
((Fmlaβπ) βͺ
{π₯ β£ βπ¦ β ((β
Sat
β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))})) |
2 | | eqid 2730 |
. . . . . . . 8
β’ (β
Sat β
) = (β
Sat β
) |
3 | 2 | satf0op 34666 |
. . . . . . 7
β’ (π β Ο β (π¦ β ((β
Sat
β
)βπ) β
βπ§(π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))) |
4 | | fveq2 6890 |
. . . . . . . . . . . 12
β’ (π§ = π€ β (1st βπ§) = (1st βπ€)) |
5 | 4 | oveq2d 7427 |
. . . . . . . . . . 11
β’ (π§ = π€ β ((1st βπ¦)βΌπ(1st
βπ§)) =
((1st βπ¦)βΌπ(1st
βπ€))) |
6 | 5 | eqeq2d 2741 |
. . . . . . . . . 10
β’ (π§ = π€ β (π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β π₯ = ((1st βπ¦)βΌπ(1st
βπ€)))) |
7 | 6 | cbvrexvw 3233 |
. . . . . . . . 9
β’
(βπ§ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β
βπ€ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€))) |
8 | 7 | orbi1i 910 |
. . . . . . . 8
β’
((βπ§ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β (βπ€ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))) |
9 | | fmlafvel 34674 |
. . . . . . . . . . . . . . . 16
β’ (π β Ο β (π§ β (Fmlaβπ) β β¨π§, β
β© β ((β
Sat β
)βπ))) |
10 | 9 | biimprd 247 |
. . . . . . . . . . . . . . 15
β’ (π β Ο β
(β¨π§, β
β©
β ((β
Sat β
)βπ) β π§ β (Fmlaβπ))) |
11 | 10 | adantld 489 |
. . . . . . . . . . . . . 14
β’ (π β Ο β ((π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β π§ β
(Fmlaβπ))) |
12 | 11 | imp 405 |
. . . . . . . . . . . . 13
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β π§ β
(Fmlaβπ)) |
13 | | vex 3476 |
. . . . . . . . . . . . . . . 16
β’ π§ β V |
14 | | 0ex 5306 |
. . . . . . . . . . . . . . . 16
β’ β
β V |
15 | 13, 14 | op1std 7987 |
. . . . . . . . . . . . . . 15
β’ (π¦ = β¨π§, β
β© β (1st
βπ¦) = π§) |
16 | 15 | eleq1d 2816 |
. . . . . . . . . . . . . 14
β’ (π¦ = β¨π§, β
β© β ((1st
βπ¦) β
(Fmlaβπ) β π§ β (Fmlaβπ))) |
17 | 16 | ad2antrl 724 |
. . . . . . . . . . . . 13
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β ((1st βπ¦) β (Fmlaβπ) β π§ β (Fmlaβπ))) |
18 | 12, 17 | mpbird 256 |
. . . . . . . . . . . 12
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β (1st βπ¦) β (Fmlaβπ)) |
19 | 18 | 3adant3 1130 |
. . . . . . . . . . 11
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β§ (βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))) β (1st βπ¦) β (Fmlaβπ)) |
20 | | oveq1 7418 |
. . . . . . . . . . . . . . 15
β’ (π’ = (1st βπ¦) β (π’βΌππ£) = ((1st βπ¦)βΌππ£)) |
21 | 20 | eqeq2d 2741 |
. . . . . . . . . . . . . 14
β’ (π’ = (1st βπ¦) β (π₯ = (π’βΌππ£) β π₯ = ((1st βπ¦)βΌππ£))) |
22 | 21 | rexbidv 3176 |
. . . . . . . . . . . . 13
β’ (π’ = (1st βπ¦) β (βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β βπ£ β (Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£))) |
23 | | eqidd 2731 |
. . . . . . . . . . . . . . . 16
β’ (π’ = (1st βπ¦) β π = π) |
24 | | id 22 |
. . . . . . . . . . . . . . . 16
β’ (π’ = (1st βπ¦) β π’ = (1st βπ¦)) |
25 | 23, 24 | goaleq12d 34640 |
. . . . . . . . . . . . . . 15
β’ (π’ = (1st βπ¦) β
βπππ’ = βππ(1st βπ¦)) |
26 | 25 | eqeq2d 2741 |
. . . . . . . . . . . . . 14
β’ (π’ = (1st βπ¦) β (π₯ = βπππ’ β π₯ = βππ(1st βπ¦))) |
27 | 26 | rexbidv 3176 |
. . . . . . . . . . . . 13
β’ (π’ = (1st βπ¦) β (βπ β Ο π₯ =
βπππ’ β βπ β Ο π₯ = βππ(1st βπ¦))) |
28 | 22, 27 | orbi12d 915 |
. . . . . . . . . . . 12
β’ (π’ = (1st βπ¦) β ((βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’) β (βπ£ β (Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£) β¨ βπ β Ο π₯ = βππ(1st βπ¦)))) |
29 | 28 | adantl 480 |
. . . . . . . . . . 11
β’ (((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β§ (βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))) β§ π’ = (1st βπ¦)) β ((βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’) β (βπ£ β (Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£) β¨ βπ β Ο π₯ = βππ(1st βπ¦)))) |
30 | 2 | satf0op 34666 |
. . . . . . . . . . . . . . . . 17
β’ (π β Ο β (π€ β ((β
Sat
β
)βπ) β
βπ¦(π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))) |
31 | | fmlafvel 34674 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π β Ο β (π¦ β (Fmlaβπ) β β¨π¦, β
β© β ((β
Sat β
)βπ))) |
32 | 31 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β Ο β
(β¨π¦, β
β©
β ((β
Sat β
)βπ) β π¦ β (Fmlaβπ))) |
33 | 32 | adantld 489 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β Ο β ((π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ))
β π¦ β
(Fmlaβπ))) |
34 | 33 | imp 405 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β π¦ β
(Fmlaβπ)) |
35 | | vex 3476 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ π¦ β V |
36 | 35, 14 | op1std 7987 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π€ = β¨π¦, β
β© β (1st
βπ€) = π¦) |
37 | 36 | eleq1d 2816 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π€ = β¨π¦, β
β© β ((1st
βπ€) β
(Fmlaβπ) β π¦ β (Fmlaβπ))) |
38 | 37 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β ((1st βπ€) β (Fmlaβπ) β π¦ β (Fmlaβπ))) |
39 | 34, 38 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β (1st βπ€) β (Fmlaβπ)) |
40 | 39 | adantr 479 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β§ π₯ = (π§βΌπ(1st
βπ€))) β
(1st βπ€)
β (Fmlaβπ)) |
41 | | oveq2 7419 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π£ = (1st βπ€) β (π§βΌππ£) = (π§βΌπ(1st
βπ€))) |
42 | 41 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π£ = (1st βπ€) β (π₯ = (π§βΌππ£) β π₯ = (π§βΌπ(1st
βπ€)))) |
43 | 42 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β§ π₯ = (π§βΌπ(1st
βπ€))) β§ π£ = (1st βπ€)) β (π₯ = (π§βΌππ£) β π₯ = (π§βΌπ(1st
βπ€)))) |
44 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β§ π₯ = (π§βΌπ(1st
βπ€))) β π₯ = (π§βΌπ(1st
βπ€))) |
45 | 40, 43, 44 | rspcedvd 3613 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β Ο β§ (π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ)))
β§ π₯ = (π§βΌπ(1st
βπ€))) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£)) |
46 | 45 | exp31 418 |
. . . . . . . . . . . . . . . . . 18
β’ (π β Ο β ((π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ))
β (π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£)))) |
47 | 46 | exlimdv 1934 |
. . . . . . . . . . . . . . . . 17
β’ (π β Ο β
(βπ¦(π€ = β¨π¦, β
β© β§ β¨π¦, β
β© β ((β
Sat β
)βπ))
β (π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£)))) |
48 | 30, 47 | sylbid 239 |
. . . . . . . . . . . . . . . 16
β’ (π β Ο β (π€ β ((β
Sat
β
)βπ) β
(π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£)))) |
49 | 48 | rexlimdv 3151 |
. . . . . . . . . . . . . . 15
β’ (π β Ο β
(βπ€ β ((β
Sat β
)βπ)π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£))) |
50 | 49 | adantr 479 |
. . . . . . . . . . . . . 14
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β (βπ€ β
((β
Sat β
)βπ)π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£))) |
51 | 15 | oveq1d 7426 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ = β¨π§, β
β© β ((1st
βπ¦)βΌπ(1st
βπ€)) = (π§βΌπ(1st
βπ€))) |
52 | 51 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ = β¨π§, β
β© β (π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β π₯ = (π§βΌπ(1st
βπ€)))) |
53 | 52 | rexbidv 3176 |
. . . . . . . . . . . . . . . 16
β’ (π¦ = β¨π§, β
β© β (βπ€ β ((β
Sat
β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β
βπ€ β ((β
Sat β
)βπ)π₯ = (π§βΌπ(1st
βπ€)))) |
54 | 15 | oveq1d 7426 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ = β¨π§, β
β© β ((1st
βπ¦)βΌππ£) = (π§βΌππ£)) |
55 | 54 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ = β¨π§, β
β© β (π₯ = ((1st βπ¦)βΌππ£) β π₯ = (π§βΌππ£))) |
56 | 55 | rexbidv 3176 |
. . . . . . . . . . . . . . . 16
β’ (π¦ = β¨π§, β
β© β (βπ£ β (Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£) β βπ£ β (Fmlaβπ)π₯ = (π§βΌππ£))) |
57 | 53, 56 | imbi12d 343 |
. . . . . . . . . . . . . . 15
β’ (π¦ = β¨π§, β
β© β ((βπ€ β ((β
Sat
β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£)) β (βπ€ β ((β
Sat
β
)βπ)π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£)))) |
58 | 57 | ad2antrl 724 |
. . . . . . . . . . . . . 14
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β ((βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£)) β (βπ€ β ((β
Sat
β
)βπ)π₯ = (π§βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = (π§βΌππ£)))) |
59 | 50, 58 | mpbird 256 |
. . . . . . . . . . . . 13
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β (βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β
βπ£ β
(Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£))) |
60 | 59 | orim1d 962 |
. . . . . . . . . . . 12
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ)))
β ((βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β (βπ£ β (Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£) β¨ βπ β Ο π₯ = βππ(1st βπ¦)))) |
61 | 60 | 3impia 1115 |
. . . . . . . . . . 11
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β§ (βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))) β (βπ£ β (Fmlaβπ)π₯ = ((1st βπ¦)βΌππ£) β¨ βπ β Ο π₯ = βππ(1st βπ¦))) |
62 | 19, 29, 61 | rspcedvd 3613 |
. . . . . . . . . 10
β’ ((π β Ο β§ (π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β§ (βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)) |
63 | 62 | 3exp 1117 |
. . . . . . . . 9
β’ (π β Ο β ((π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β ((βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)))) |
64 | 63 | exlimdv 1934 |
. . . . . . . 8
β’ (π β Ο β
(βπ§(π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β ((βπ€ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ€)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)))) |
65 | 8, 64 | syl7bi 254 |
. . . . . . 7
β’ (π β Ο β
(βπ§(π¦ = β¨π§, β
β© β§ β¨π§, β
β© β ((β
Sat β
)βπ))
β ((βπ§ β
((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)))) |
66 | 3, 65 | sylbid 239 |
. . . . . 6
β’ (π β Ο β (π¦ β ((β
Sat
β
)βπ) β
((βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)))) |
67 | 66 | rexlimdv 3151 |
. . . . 5
β’ (π β Ο β
(βπ¦ β ((β
Sat β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’))) |
68 | | fmlafvel 34674 |
. . . . . . . . 9
β’ (π β Ο β (π’ β (Fmlaβπ) β β¨π’, β
β© β ((β
Sat β
)βπ))) |
69 | 68 | biimpa 475 |
. . . . . . . 8
β’ ((π β Ο β§ π’ β (Fmlaβπ)) β β¨π’, β
β© β ((β
Sat β
)βπ)) |
70 | 69 | adantr 479 |
. . . . . . 7
β’ (((π β Ο β§ π’ β (Fmlaβπ)) β§ (βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)) β β¨π’, β
β© β ((β
Sat
β
)βπ)) |
71 | | vex 3476 |
. . . . . . . . . . . . 13
β’ π’ β V |
72 | 71, 14 | op1std 7987 |
. . . . . . . . . . . 12
β’ (π¦ = β¨π’, β
β© β (1st
βπ¦) = π’) |
73 | 72 | oveq1d 7426 |
. . . . . . . . . . 11
β’ (π¦ = β¨π’, β
β© β ((1st
βπ¦)βΌπ(1st
βπ§)) = (π’βΌπ(1st
βπ§))) |
74 | 73 | eqeq2d 2741 |
. . . . . . . . . 10
β’ (π¦ = β¨π’, β
β© β (π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β π₯ = (π’βΌπ(1st
βπ§)))) |
75 | 74 | rexbidv 3176 |
. . . . . . . . 9
β’ (π¦ = β¨π’, β
β© β (βπ§ β ((β
Sat
β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β
βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§)))) |
76 | | eqidd 2731 |
. . . . . . . . . . . 12
β’ (π¦ = β¨π’, β
β© β π = π) |
77 | 76, 72 | goaleq12d 34640 |
. . . . . . . . . . 11
β’ (π¦ = β¨π’, β
β© β
βππ(1st βπ¦) = βπππ’) |
78 | 77 | eqeq2d 2741 |
. . . . . . . . . 10
β’ (π¦ = β¨π’, β
β© β (π₯ = βππ(1st βπ¦) β π₯ = βπππ’)) |
79 | 78 | rexbidv 3176 |
. . . . . . . . 9
β’ (π¦ = β¨π’, β
β© β (βπ β Ο π₯ =
βππ(1st βπ¦) β βπ β Ο π₯ = βπππ’)) |
80 | 75, 79 | orbi12d 915 |
. . . . . . . 8
β’ (π¦ = β¨π’, β
β© β ((βπ§ β ((β
Sat
β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β (βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βπππ’))) |
81 | 80 | adantl 480 |
. . . . . . 7
β’ ((((π β Ο β§ π’ β (Fmlaβπ)) β§ (βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)) β§ π¦ = β¨π’, β
β©) β ((βπ§ β ((β
Sat
β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β (βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βπππ’))) |
82 | | fmlafvel 34674 |
. . . . . . . . . . . . . . 15
β’ (π β Ο β (π£ β (Fmlaβπ) β β¨π£, β
β© β ((β
Sat β
)βπ))) |
83 | 82 | biimpd 228 |
. . . . . . . . . . . . . 14
β’ (π β Ο β (π£ β (Fmlaβπ) β β¨π£, β
β© β ((β
Sat β
)βπ))) |
84 | 83 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((π β Ο β§ π’ β (Fmlaβπ)) β (π£ β (Fmlaβπ) β β¨π£, β
β© β ((β
Sat
β
)βπ))) |
85 | 84 | imp 405 |
. . . . . . . . . . . 12
β’ (((π β Ο β§ π’ β (Fmlaβπ)) β§ π£ β (Fmlaβπ)) β β¨π£, β
β© β ((β
Sat
β
)βπ)) |
86 | 85 | adantr 479 |
. . . . . . . . . . 11
β’ ((((π β Ο β§ π’ β (Fmlaβπ)) β§ π£ β (Fmlaβπ)) β§ π₯ = (π’βΌππ£)) β β¨π£, β
β© β ((β
Sat
β
)βπ)) |
87 | | vex 3476 |
. . . . . . . . . . . . . . 15
β’ π£ β V |
88 | 87, 14 | op1std 7987 |
. . . . . . . . . . . . . 14
β’ (π§ = β¨π£, β
β© β (1st
βπ§) = π£) |
89 | 88 | oveq2d 7427 |
. . . . . . . . . . . . 13
β’ (π§ = β¨π£, β
β© β (π’βΌπ(1st
βπ§)) = (π’βΌππ£)) |
90 | 89 | eqeq2d 2741 |
. . . . . . . . . . . 12
β’ (π§ = β¨π£, β
β© β (π₯ = (π’βΌπ(1st
βπ§)) β π₯ = (π’βΌππ£))) |
91 | 90 | adantl 480 |
. . . . . . . . . . 11
β’
(((((π β
Ο β§ π’ β
(Fmlaβπ)) β§ π£ β (Fmlaβπ)) β§ π₯ = (π’βΌππ£)) β§ π§ = β¨π£, β
β©) β (π₯ = (π’βΌπ(1st
βπ§)) β π₯ = (π’βΌππ£))) |
92 | | simpr 483 |
. . . . . . . . . . 11
β’ ((((π β Ο β§ π’ β (Fmlaβπ)) β§ π£ β (Fmlaβπ)) β§ π₯ = (π’βΌππ£)) β π₯ = (π’βΌππ£)) |
93 | 86, 91, 92 | rspcedvd 3613 |
. . . . . . . . . 10
β’ ((((π β Ο β§ π’ β (Fmlaβπ)) β§ π£ β (Fmlaβπ)) β§ π₯ = (π’βΌππ£)) β βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§))) |
94 | 93 | rexlimdva2 3155 |
. . . . . . . . 9
β’ ((π β Ο β§ π’ β (Fmlaβπ)) β (βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§)))) |
95 | 94 | orim1d 962 |
. . . . . . . 8
β’ ((π β Ο β§ π’ β (Fmlaβπ)) β ((βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’) β (βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βπππ’))) |
96 | 95 | imp 405 |
. . . . . . 7
β’ (((π β Ο β§ π’ β (Fmlaβπ)) β§ (βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)) β (βπ§ β ((β
Sat β
)βπ)π₯ = (π’βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βπππ’)) |
97 | 70, 81, 96 | rspcedvd 3613 |
. . . . . 6
β’ (((π β Ο β§ π’ β (Fmlaβπ)) β§ (βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)) β βπ¦ β ((β
Sat β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))) |
98 | 97 | rexlimdva2 3155 |
. . . . 5
β’ (π β Ο β
(βπ’ β
(Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’) β βπ¦ β ((β
Sat β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)))) |
99 | 67, 98 | impbid 211 |
. . . 4
β’ (π β Ο β
(βπ¦ β ((β
Sat β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦)) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’))) |
100 | 99 | abbidv 2799 |
. . 3
β’ (π β Ο β {π₯ β£ βπ¦ β ((β
Sat
β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))} = {π₯ β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)}) |
101 | 100 | uneq2d 4162 |
. 2
β’ (π β Ο β
((Fmlaβπ) βͺ
{π₯ β£ βπ¦ β ((β
Sat
β
)βπ)(βπ§ β ((β
Sat β
)βπ)π₯ = ((1st βπ¦)βΌπ(1st
βπ§)) β¨
βπ β Ο
π₯ =
βππ(1st βπ¦))}) = ((Fmlaβπ) βͺ {π₯ β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)})) |
102 | 1, 101 | eqtrd 2770 |
1
β’ (π β Ο β
(Fmlaβsuc π) =
((Fmlaβπ) βͺ
{π₯ β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π₯ = (π’βΌππ£) β¨ βπ β Ο π₯ = βπππ’)})) |