Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0 Structured version   Visualization version   GIF version

Theorem fmla0 33323
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi vj ("Godel-set of membership") coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 14-Sep-2023.)
Assertion
Ref Expression
fmla0 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
Distinct variable group:   𝑖,𝑗,𝑥

Proof of Theorem fmla0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 peano1 7723 . . 3 ∅ ∈ ω
2 elelsuc 6335 . . 3 (∅ ∈ ω → ∅ ∈ suc ω)
3 fmlafv 33321 . . 3 (∅ ∈ suc ω → (Fmla‘∅) = dom ((∅ Sat ∅)‘∅))
41, 2, 3mp2b 10 . 2 (Fmla‘∅) = dom ((∅ Sat ∅)‘∅)
5 satf00 33315 . . 3 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
65dmeqi 5810 . 2 dom ((∅ Sat ∅)‘∅) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
7 0ex 5234 . . . . . 6 ∅ ∈ V
87isseti 3445 . . . . 5 𝑦 𝑦 = ∅
9 19.41v 1956 . . . . 5 (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∃𝑦 𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
108, 9mpbiran 705 . . . 4 (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))
1110abbii 2809 . . 3 {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
12 dmopab 5821 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
13 rabab 3458 . . 3 {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
1411, 12, 133eqtr4i 2777 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
154, 6, 143eqtri 2771 1 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1785  wcel 2109  {cab 2716  wrex 3066  {crab 3069  Vcvv 3430  c0 4261  {copab 5140  dom cdm 5588  suc csuc 6265  cfv 6430  (class class class)co 7268  ωcom 7700  𝑔cgoe 33274   Sat csat 33277  Fmlacfmla 33278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-map 8591  df-goel 33281  df-sat 33284  df-fmla 33286
This theorem is referenced by:  fmla0xp  33324  fmlafvel  33326  fmla1  33328  fmlaomn0  33331  gonan0  33333  goaln0  33334  gonar  33336  goalr  33338  fmla0disjsuc  33339  satfv0fvfmla0  33354  sategoelfvb  33360
  Copyright terms: Public domain W3C validator