Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmla0 | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
fmla0 | ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7600 | . . 3 ⊢ ∅ ∈ ω | |
2 | elelsuc 6241 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
3 | fmlafv 32858 | . . 3 ⊢ (∅ ∈ suc ω → (Fmla‘∅) = dom ((∅ Sat ∅)‘∅)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (Fmla‘∅) = dom ((∅ Sat ∅)‘∅) |
5 | satf00 32852 | . . 3 ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | |
6 | 5 | dmeqi 5744 | . 2 ⊢ dom ((∅ Sat ∅)‘∅) = dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
7 | 0ex 5177 | . . . . . 6 ⊢ ∅ ∈ V | |
8 | 7 | isseti 3424 | . . . . 5 ⊢ ∃𝑦 𝑦 = ∅ |
9 | 19.41v 1950 | . . . . 5 ⊢ (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ (∃𝑦 𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) | |
10 | 8, 9 | mpbiran 708 | . . . 4 ⊢ (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) |
11 | 10 | abbii 2823 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
12 | dmopab 5755 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | |
13 | rabab 3439 | . . 3 ⊢ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} | |
14 | 11, 12, 13 | 3eqtr4i 2791 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
15 | 4, 6, 14 | 3eqtri 2785 | 1 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {cab 2735 ∃wrex 3071 {crab 3074 Vcvv 3409 ∅c0 4225 {copab 5094 dom cdm 5524 suc csuc 6171 ‘cfv 6335 (class class class)co 7150 ωcom 7579 ∈𝑔cgoe 32811 Sat csat 32814 Fmlacfmla 32815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-map 8418 df-goel 32818 df-sat 32821 df-fmla 32823 |
This theorem is referenced by: fmla0xp 32861 fmlafvel 32863 fmla1 32865 fmlaomn0 32868 gonan0 32870 goaln0 32871 gonar 32873 goalr 32875 fmla0disjsuc 32876 satfv0fvfmla0 32891 sategoelfvb 32897 |
Copyright terms: Public domain | W3C validator |