![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmla0 | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi β vj ("Godel-set of membership") coded as β¨β , β¨π, πβ©β©. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
fmla0 | β’ (Fmlaββ ) = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7875 | . . 3 β’ β β Ο | |
2 | elelsuc 6434 | . . 3 β’ (β β Ο β β β suc Ο) | |
3 | fmlafv 34359 | . . 3 β’ (β β suc Ο β (Fmlaββ ) = dom ((β Sat β )ββ )) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ (Fmlaββ ) = dom ((β Sat β )ββ ) |
5 | satf00 34353 | . . 3 β’ ((β Sat β )ββ ) = {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} | |
6 | 5 | dmeqi 5902 | . 2 β’ dom ((β Sat β )ββ ) = dom {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} |
7 | 0ex 5306 | . . . . . 6 β’ β β V | |
8 | 7 | isseti 3489 | . . . . 5 β’ βπ¦ π¦ = β |
9 | 19.41v 1953 | . . . . 5 β’ (βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ)) β (βπ¦ π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))) | |
10 | 8, 9 | mpbiran 707 | . . . 4 β’ (βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ)) β βπ β Ο βπ β Ο π₯ = (πβππ)) |
11 | 10 | abbii 2802 | . . 3 β’ {π₯ β£ βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} = {π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
12 | dmopab 5913 | . . 3 β’ dom {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} = {π₯ β£ βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} | |
13 | rabab 3502 | . . 3 β’ {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} = {π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} | |
14 | 11, 12, 13 | 3eqtr4i 2770 | . 2 β’ dom {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
15 | 4, 6, 14 | 3eqtri 2764 | 1 β’ (Fmlaββ ) = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 βwex 1781 β wcel 2106 {cab 2709 βwrex 3070 {crab 3432 Vcvv 3474 β c0 4321 {copab 5209 dom cdm 5675 suc csuc 6363 βcfv 6540 (class class class)co 7405 Οcom 7851 βπcgoe 34312 Sat csat 34315 Fmlacfmla 34316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8818 df-goel 34319 df-sat 34322 df-fmla 34324 |
This theorem is referenced by: fmla0xp 34362 fmlafvel 34364 fmla1 34366 fmlaomn0 34369 gonan0 34371 goaln0 34372 gonar 34374 goalr 34376 fmla0disjsuc 34377 satfv0fvfmla0 34392 sategoelfvb 34398 |
Copyright terms: Public domain | W3C validator |