| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmla0 | Structured version Visualization version GIF version | ||
| Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| fmla0 | ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7889 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | elelsuc 6432 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
| 3 | fmlafv 35407 | . . 3 ⊢ (∅ ∈ suc ω → (Fmla‘∅) = dom ((∅ Sat ∅)‘∅)) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (Fmla‘∅) = dom ((∅ Sat ∅)‘∅) |
| 5 | satf00 35401 | . . 3 ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | |
| 6 | 5 | dmeqi 5889 | . 2 ⊢ dom ((∅ Sat ∅)‘∅) = dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| 7 | 0ex 5282 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | 7 | isseti 3482 | . . . . 5 ⊢ ∃𝑦 𝑦 = ∅ |
| 9 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ (∃𝑦 𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) | |
| 10 | 8, 9 | mpbiran 709 | . . . 4 ⊢ (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) |
| 11 | 10 | abbii 2803 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
| 12 | dmopab 5900 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | |
| 13 | rabab 3496 | . . 3 ⊢ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2769 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
| 15 | 4, 6, 14 | 3eqtri 2763 | 1 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {crab 3420 Vcvv 3464 ∅c0 4313 {copab 5186 dom cdm 5659 suc csuc 6359 ‘cfv 6536 (class class class)co 7410 ωcom 7866 ∈𝑔cgoe 35360 Sat csat 35363 Fmlacfmla 35364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-map 8847 df-goel 35367 df-sat 35370 df-fmla 35372 |
| This theorem is referenced by: fmla0xp 35410 fmlafvel 35412 fmla1 35414 fmlaomn0 35417 gonan0 35419 goaln0 35420 gonar 35422 goalr 35424 fmla0disjsuc 35425 satfv0fvfmla0 35440 sategoelfvb 35446 |
| Copyright terms: Public domain | W3C validator |