![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmla0 | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi β vj ("Godel-set of membership") coded as β¨β , β¨π, πβ©β©. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
fmla0 | β’ (Fmlaββ ) = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7873 | . . 3 β’ β β Ο | |
2 | elelsuc 6428 | . . 3 β’ (β β Ο β β β suc Ο) | |
3 | fmlafv 34889 | . . 3 β’ (β β suc Ο β (Fmlaββ ) = dom ((β Sat β )ββ )) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ (Fmlaββ ) = dom ((β Sat β )ββ ) |
5 | satf00 34883 | . . 3 β’ ((β Sat β )ββ ) = {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} | |
6 | 5 | dmeqi 5895 | . 2 β’ dom ((β Sat β )ββ ) = dom {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} |
7 | 0ex 5298 | . . . . . 6 β’ β β V | |
8 | 7 | isseti 3482 | . . . . 5 β’ βπ¦ π¦ = β |
9 | 19.41v 1945 | . . . . 5 β’ (βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ)) β (βπ¦ π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))) | |
10 | 8, 9 | mpbiran 706 | . . . 4 β’ (βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ)) β βπ β Ο βπ β Ο π₯ = (πβππ)) |
11 | 10 | abbii 2794 | . . 3 β’ {π₯ β£ βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} = {π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
12 | dmopab 5906 | . . 3 β’ dom {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} = {π₯ β£ βπ¦(π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} | |
13 | rabab 3495 | . . 3 β’ {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} = {π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} | |
14 | 11, 12, 13 | 3eqtr4i 2762 | . 2 β’ dom {β¨π₯, π¦β© β£ (π¦ = β β§ βπ β Ο βπ β Ο π₯ = (πβππ))} = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
15 | 4, 6, 14 | 3eqtri 2756 | 1 β’ (Fmlaββ ) = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 {cab 2701 βwrex 3062 {crab 3424 Vcvv 3466 β c0 4315 {copab 5201 dom cdm 5667 suc csuc 6357 βcfv 6534 (class class class)co 7402 Οcom 7849 βπcgoe 34842 Sat csat 34845 Fmlacfmla 34846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8819 df-goel 34849 df-sat 34852 df-fmla 34854 |
This theorem is referenced by: fmla0xp 34892 fmlafvel 34894 fmla1 34896 fmlaomn0 34899 gonan0 34901 goaln0 34902 gonar 34904 goalr 34906 fmla0disjsuc 34907 satfv0fvfmla0 34922 sategoelfvb 34928 |
Copyright terms: Public domain | W3C validator |