Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmla0 | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
fmla0 | ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7767 | . . 3 ⊢ ∅ ∈ ω | |
2 | elelsuc 6353 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
3 | fmlafv 33387 | . . 3 ⊢ (∅ ∈ suc ω → (Fmla‘∅) = dom ((∅ Sat ∅)‘∅)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (Fmla‘∅) = dom ((∅ Sat ∅)‘∅) |
5 | satf00 33381 | . . 3 ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | |
6 | 5 | dmeqi 5826 | . 2 ⊢ dom ((∅ Sat ∅)‘∅) = dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
7 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
8 | 7 | isseti 3452 | . . . . 5 ⊢ ∃𝑦 𝑦 = ∅ |
9 | 19.41v 1951 | . . . . 5 ⊢ (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ (∃𝑦 𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) | |
10 | 8, 9 | mpbiran 707 | . . . 4 ⊢ (∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) |
11 | 10 | abbii 2806 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
12 | dmopab 5837 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∣ ∃𝑦(𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | |
13 | rabab 3465 | . . 3 ⊢ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} | |
14 | 11, 12, 13 | 3eqtr4i 2774 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
15 | 4, 6, 14 | 3eqtri 2768 | 1 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 ∃wrex 3071 {crab 3284 Vcvv 3437 ∅c0 4262 {copab 5143 dom cdm 5600 suc csuc 6283 ‘cfv 6458 (class class class)co 7307 ωcom 7744 ∈𝑔cgoe 33340 Sat csat 33343 Fmlacfmla 33344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-map 8648 df-goel 33347 df-sat 33350 df-fmla 33352 |
This theorem is referenced by: fmla0xp 33390 fmlafvel 33392 fmla1 33394 fmlaomn0 33397 gonan0 33399 goaln0 33400 gonar 33402 goalr 33404 fmla0disjsuc 33405 satfv0fvfmla0 33420 sategoelfvb 33426 |
Copyright terms: Public domain | W3C validator |