Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlafv | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
Ref | Expression |
---|---|
fmlafv | ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmla 33207 | . . 3 ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))) |
3 | fveq2 6756 | . . . 4 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
4 | 3 | dmeqd 5803 | . . 3 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
6 | id 22 | . 2 ⊢ (𝑁 ∈ suc ω → 𝑁 ∈ suc ω) | |
7 | fvex 6769 | . . . 4 ⊢ ((∅ Sat ∅)‘𝑁) ∈ V | |
8 | 7 | dmex 7732 | . . 3 ⊢ dom ((∅ Sat ∅)‘𝑁) ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 6864 | 1 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 dom cdm 5580 suc csuc 6253 ‘cfv 6418 (class class class)co 7255 ωcom 7687 Sat csat 33198 Fmlacfmla 33199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-fmla 33207 |
This theorem is referenced by: fmla 33243 fmla0 33244 fmlasuc0 33246 satfdmfmla 33262 |
Copyright terms: Public domain | W3C validator |