Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafv Structured version   Visualization version   GIF version

Theorem fmlafv 35378
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmlafv (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))

Proof of Theorem fmlafv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmla 35343 . . 3 Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
21a1i 11 . 2 (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)))
3 fveq2 6914 . . . 4 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
43dmeqd 5923 . . 3 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
54adantl 481 . 2 ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
6 id 22 . 2 (𝑁 ∈ suc ω → 𝑁 ∈ suc ω)
7 fvex 6927 . . . 4 ((∅ Sat ∅)‘𝑁) ∈ V
87dmex 7939 . . 3 dom ((∅ Sat ∅)‘𝑁) ∈ V
98a1i 11 . 2 (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V)
102, 5, 6, 9fvmptd 7030 1 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3481  c0 4342  cmpt 5234  dom cdm 5693  suc csuc 6394  cfv 6569  (class class class)co 7438  ωcom 7894   Sat csat 35334  Fmlacfmla 35335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-iota 6522  df-fun 6571  df-fv 6577  df-fmla 35343
This theorem is referenced by:  fmla  35379  fmla0  35380  fmlasuc0  35382  satfdmfmla  35398
  Copyright terms: Public domain W3C validator