| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlafv | Structured version Visualization version GIF version | ||
| Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| fmlafv | ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmla 35410 | . . 3 ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))) |
| 3 | fveq2 6828 | . . . 4 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
| 4 | 3 | dmeqd 5849 | . . 3 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 6 | id 22 | . 2 ⊢ (𝑁 ∈ suc ω → 𝑁 ∈ suc ω) | |
| 7 | fvex 6841 | . . . 4 ⊢ ((∅ Sat ∅)‘𝑁) ∈ V | |
| 8 | 7 | dmex 7845 | . . 3 ⊢ dom ((∅ Sat ∅)‘𝑁) ∈ V |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V) |
| 10 | 2, 5, 6, 9 | fvmptd 6942 | 1 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ↦ cmpt 5174 dom cdm 5619 suc csuc 6313 ‘cfv 6486 (class class class)co 7352 ωcom 7802 Sat csat 35401 Fmlacfmla 35402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-fmla 35410 |
| This theorem is referenced by: fmla 35446 fmla0 35447 fmlasuc0 35449 satfdmfmla 35465 |
| Copyright terms: Public domain | W3C validator |