![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlafv | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height π is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at π. (Contributed by AV, 15-Sep-2023.) |
Ref | Expression |
---|---|
fmlafv | β’ (π β suc Ο β (Fmlaβπ) = dom ((β Sat β )βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmla 34634 | . . 3 β’ Fmla = (π β suc Ο β¦ dom ((β Sat β )βπ)) | |
2 | 1 | a1i 11 | . 2 β’ (π β suc Ο β Fmla = (π β suc Ο β¦ dom ((β Sat β )βπ))) |
3 | fveq2 6890 | . . . 4 β’ (π = π β ((β Sat β )βπ) = ((β Sat β )βπ)) | |
4 | 3 | dmeqd 5904 | . . 3 β’ (π = π β dom ((β Sat β )βπ) = dom ((β Sat β )βπ)) |
5 | 4 | adantl 480 | . 2 β’ ((π β suc Ο β§ π = π) β dom ((β Sat β )βπ) = dom ((β Sat β )βπ)) |
6 | id 22 | . 2 β’ (π β suc Ο β π β suc Ο) | |
7 | fvex 6903 | . . . 4 β’ ((β Sat β )βπ) β V | |
8 | 7 | dmex 7904 | . . 3 β’ dom ((β Sat β )βπ) β V |
9 | 8 | a1i 11 | . 2 β’ (π β suc Ο β dom ((β Sat β )βπ) β V) |
10 | 2, 5, 6, 9 | fvmptd 7004 | 1 β’ (π β suc Ο β (Fmlaβπ) = dom ((β Sat β )βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 β¦ cmpt 5230 dom cdm 5675 suc csuc 6365 βcfv 6542 (class class class)co 7411 Οcom 7857 Sat csat 34625 Fmlacfmla 34626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-fmla 34634 |
This theorem is referenced by: fmla 34670 fmla0 34671 fmlasuc0 34673 satfdmfmla 34689 |
Copyright terms: Public domain | W3C validator |