Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafv Structured version   Visualization version   GIF version

Theorem fmlafv 35412
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmlafv (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))

Proof of Theorem fmlafv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmla 35377 . . 3 Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
21a1i 11 . 2 (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)))
3 fveq2 6822 . . . 4 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
43dmeqd 5845 . . 3 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
54adantl 481 . 2 ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
6 id 22 . 2 (𝑁 ∈ suc ω → 𝑁 ∈ suc ω)
7 fvex 6835 . . . 4 ((∅ Sat ∅)‘𝑁) ∈ V
87dmex 7839 . . 3 dom ((∅ Sat ∅)‘𝑁) ∈ V
98a1i 11 . 2 (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V)
102, 5, 6, 9fvmptd 6936 1 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  cmpt 5172  dom cdm 5616  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796   Sat csat 35368  Fmlacfmla 35369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-fmla 35377
This theorem is referenced by:  fmla  35413  fmla0  35414  fmlasuc0  35416  satfdmfmla  35432
  Copyright terms: Public domain W3C validator