Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlafv | Structured version Visualization version GIF version |
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
Ref | Expression |
---|---|
fmlafv | ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmla 33315 | . . 3 ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))) |
3 | fveq2 6766 | . . . 4 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
4 | 3 | dmeqd 5807 | . . 3 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
6 | id 22 | . 2 ⊢ (𝑁 ∈ suc ω → 𝑁 ∈ suc ω) | |
7 | fvex 6779 | . . . 4 ⊢ ((∅ Sat ∅)‘𝑁) ∈ V | |
8 | 7 | dmex 7748 | . . 3 ⊢ dom ((∅ Sat ∅)‘𝑁) ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 6874 | 1 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ∅c0 4256 ↦ cmpt 5156 dom cdm 5584 suc csuc 6261 ‘cfv 6426 (class class class)co 7267 ωcom 7702 Sat csat 33306 Fmlacfmla 33307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-iota 6384 df-fun 6428 df-fv 6434 df-fmla 33315 |
This theorem is referenced by: fmla 33351 fmla0 33352 fmlasuc0 33354 satfdmfmla 33370 |
Copyright terms: Public domain | W3C validator |