| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlafv | Structured version Visualization version GIF version | ||
| Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| fmlafv | ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmla 35284 | . . 3 ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))) |
| 3 | fveq2 6885 | . . . 4 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
| 4 | 3 | dmeqd 5896 | . . 3 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 6 | id 22 | . 2 ⊢ (𝑁 ∈ suc ω → 𝑁 ∈ suc ω) | |
| 7 | fvex 6898 | . . . 4 ⊢ ((∅ Sat ∅)‘𝑁) ∈ V | |
| 8 | 7 | dmex 7912 | . . 3 ⊢ dom ((∅ Sat ∅)‘𝑁) ∈ V |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V) |
| 10 | 2, 5, 6, 9 | fvmptd 7002 | 1 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 ↦ cmpt 5205 dom cdm 5665 suc csuc 6365 ‘cfv 6540 (class class class)co 7412 ωcom 7868 Sat csat 35275 Fmlacfmla 35276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6493 df-fun 6542 df-fv 6548 df-fmla 35284 |
| This theorem is referenced by: fmla 35320 fmla0 35321 fmlasuc0 35323 satfdmfmla 35339 |
| Copyright terms: Public domain | W3C validator |