Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafv Structured version   Visualization version   GIF version

Theorem fmlafv 35319
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmlafv (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))

Proof of Theorem fmlafv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmla 35284 . . 3 Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
21a1i 11 . 2 (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)))
3 fveq2 6885 . . . 4 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
43dmeqd 5896 . . 3 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
54adantl 481 . 2 ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
6 id 22 . 2 (𝑁 ∈ suc ω → 𝑁 ∈ suc ω)
7 fvex 6898 . . . 4 ((∅ Sat ∅)‘𝑁) ∈ V
87dmex 7912 . . 3 dom ((∅ Sat ∅)‘𝑁) ∈ V
98a1i 11 . 2 (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V)
102, 5, 6, 9fvmptd 7002 1 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  cmpt 5205  dom cdm 5665  suc csuc 6365  cfv 6540  (class class class)co 7412  ωcom 7868   Sat csat 35275  Fmlacfmla 35276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6493  df-fun 6542  df-fv 6548  df-fmla 35284
This theorem is referenced by:  fmla  35320  fmla0  35321  fmlasuc0  35323  satfdmfmla  35339
  Copyright terms: Public domain W3C validator