Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafv Structured version   Visualization version   GIF version

Theorem fmlafv 34669
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmlafv (𝑁 ∈ suc Ο‰ β†’ (Fmlaβ€˜π‘) = dom ((βˆ… Sat βˆ…)β€˜π‘))

Proof of Theorem fmlafv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmla 34634 . . 3 Fmla = (𝑛 ∈ suc Ο‰ ↦ dom ((βˆ… Sat βˆ…)β€˜π‘›))
21a1i 11 . 2 (𝑁 ∈ suc Ο‰ β†’ Fmla = (𝑛 ∈ suc Ο‰ ↦ dom ((βˆ… Sat βˆ…)β€˜π‘›)))
3 fveq2 6890 . . . 4 (𝑛 = 𝑁 β†’ ((βˆ… Sat βˆ…)β€˜π‘›) = ((βˆ… Sat βˆ…)β€˜π‘))
43dmeqd 5904 . . 3 (𝑛 = 𝑁 β†’ dom ((βˆ… Sat βˆ…)β€˜π‘›) = dom ((βˆ… Sat βˆ…)β€˜π‘))
54adantl 480 . 2 ((𝑁 ∈ suc Ο‰ ∧ 𝑛 = 𝑁) β†’ dom ((βˆ… Sat βˆ…)β€˜π‘›) = dom ((βˆ… Sat βˆ…)β€˜π‘))
6 id 22 . 2 (𝑁 ∈ suc Ο‰ β†’ 𝑁 ∈ suc Ο‰)
7 fvex 6903 . . . 4 ((βˆ… Sat βˆ…)β€˜π‘) ∈ V
87dmex 7904 . . 3 dom ((βˆ… Sat βˆ…)β€˜π‘) ∈ V
98a1i 11 . 2 (𝑁 ∈ suc Ο‰ β†’ dom ((βˆ… Sat βˆ…)β€˜π‘) ∈ V)
102, 5, 6, 9fvmptd 7004 1 (𝑁 ∈ suc Ο‰ β†’ (Fmlaβ€˜π‘) = dom ((βˆ… Sat βˆ…)β€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4321   ↦ cmpt 5230  dom cdm 5675  suc csuc 6365  β€˜cfv 6542  (class class class)co 7411  Ο‰com 7857   Sat csat 34625  Fmlacfmla 34626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fv 6550  df-fmla 34634
This theorem is referenced by:  fmla  34670  fmla0  34671  fmlasuc0  34673  satfdmfmla  34689
  Copyright terms: Public domain W3C validator