Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafv Structured version   Visualization version   GIF version

Theorem fmlafv 35221
Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmlafv (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))

Proof of Theorem fmlafv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-fmla 35186 . . 3 Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
21a1i 11 . 2 (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)))
3 fveq2 6893 . . . 4 (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁))
43dmeqd 5904 . . 3 (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
54adantl 480 . 2 ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁))
6 id 22 . 2 (𝑁 ∈ suc ω → 𝑁 ∈ suc ω)
7 fvex 6906 . . . 4 ((∅ Sat ∅)‘𝑁) ∈ V
87dmex 7914 . . 3 dom ((∅ Sat ∅)‘𝑁) ∈ V
98a1i 11 . 2 (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V)
102, 5, 6, 9fvmptd 7008 1 (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462  c0 4322  cmpt 5228  dom cdm 5674  suc csuc 6370  cfv 6546  (class class class)co 7416  ωcom 7868   Sat csat 35177  Fmlacfmla 35178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-iota 6498  df-fun 6548  df-fv 6554  df-fmla 35186
This theorem is referenced by:  fmla  35222  fmla0  35223  fmlasuc0  35225  satfdmfmla  35241
  Copyright terms: Public domain W3C validator