| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmlafv | Structured version Visualization version GIF version | ||
| Description: The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| fmlafv | ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmla 35334 | . . 3 ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))) |
| 3 | fveq2 6865 | . . . 4 ⊢ (𝑛 = 𝑁 → ((∅ Sat ∅)‘𝑛) = ((∅ Sat ∅)‘𝑁)) | |
| 4 | 3 | dmeqd 5877 | . . 3 ⊢ (𝑛 = 𝑁 → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑁 ∈ suc ω ∧ 𝑛 = 𝑁) → dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat ∅)‘𝑁)) |
| 6 | id 22 | . 2 ⊢ (𝑁 ∈ suc ω → 𝑁 ∈ suc ω) | |
| 7 | fvex 6878 | . . . 4 ⊢ ((∅ Sat ∅)‘𝑁) ∈ V | |
| 8 | 7 | dmex 7894 | . . 3 ⊢ dom ((∅ Sat ∅)‘𝑁) ∈ V |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝑁 ∈ suc ω → dom ((∅ Sat ∅)‘𝑁) ∈ V) |
| 10 | 2, 5, 6, 9 | fvmptd 6982 | 1 ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 ↦ cmpt 5196 dom cdm 5646 suc csuc 6342 ‘cfv 6519 (class class class)co 7394 ωcom 7850 Sat csat 35325 Fmlacfmla 35326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fv 6527 df-fmla 35334 |
| This theorem is referenced by: fmla 35370 fmla0 35371 fmlasuc0 35373 satfdmfmla 35389 |
| Copyright terms: Public domain | W3C validator |