Step | Hyp | Ref
| Expression |
1 | | df-fmla 32824 |
. . 3
⊢ Fmla =
(𝑛 ∈ suc ω
↦ dom ((∅ Sat ∅)‘𝑛)) |
2 | 1 | fveq1i 6660 |
. 2
⊢
(Fmla‘ω) = ((𝑛 ∈ suc ω ↦ dom ((∅ Sat
∅)‘𝑛))‘ω) |
3 | | omex 9140 |
. . 3
⊢ ω
∈ V |
4 | | eqidd 2760 |
. . . 4
⊢ (ω
∈ V → (𝑛 ∈
suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) = (𝑛 ∈ suc ω ↦ dom ((∅ Sat
∅)‘𝑛))) |
5 | | fveq2 6659 |
. . . . . 6
⊢ (𝑛 = ω → ((∅ Sat
∅)‘𝑛) =
((∅ Sat ∅)‘ω)) |
6 | 5 | dmeqd 5746 |
. . . . 5
⊢ (𝑛 = ω → dom ((∅
Sat ∅)‘𝑛) = dom
((∅ Sat ∅)‘ω)) |
7 | 6 | adantl 486 |
. . . 4
⊢ ((ω
∈ V ∧ 𝑛 = ω)
→ dom ((∅ Sat ∅)‘𝑛) = dom ((∅ Sat
∅)‘ω)) |
8 | | sucidg 6248 |
. . . 4
⊢ (ω
∈ V → ω ∈ suc ω) |
9 | | fvex 6672 |
. . . . . 6
⊢ ((∅
Sat ∅)‘ω) ∈ V |
10 | 9 | dmex 7622 |
. . . . 5
⊢ dom
((∅ Sat ∅)‘ω) ∈ V |
11 | 10 | a1i 11 |
. . . 4
⊢ (ω
∈ V → dom ((∅ Sat ∅)‘ω) ∈
V) |
12 | 4, 7, 8, 11 | fvmptd 6767 |
. . 3
⊢ (ω
∈ V → ((𝑛 ∈
suc ω ↦ dom ((∅ Sat ∅)‘𝑛))‘ω) = dom ((∅ Sat
∅)‘ω)) |
13 | 3, 12 | ax-mp 5 |
. 2
⊢ ((𝑛 ∈ suc ω ↦ dom
((∅ Sat ∅)‘𝑛))‘ω) = dom ((∅ Sat
∅)‘ω) |
14 | 3 | sucid 6249 |
. . . . . 6
⊢ ω
∈ suc ω |
15 | | satf0sucom 32852 |
. . . . . 6
⊢ (ω
∈ suc ω → ((∅ Sat ∅)‘ω) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘ω)) |
16 | 14, 15 | ax-mp 5 |
. . . . 5
⊢ ((∅
Sat ∅)‘ω) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘ω) |
17 | | limom 7595 |
. . . . . 6
⊢ Lim
ω |
18 | | rdglim2a 8080 |
. . . . . 6
⊢ ((ω
∈ V ∧ Lim ω) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘ω) = ∪ 𝑛 ∈ ω (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛)) |
19 | 3, 17, 18 | mp2an 692 |
. . . . 5
⊢
(rec((𝑓 ∈ V
↦ (𝑓 ∪
{〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘ω) = ∪ 𝑛 ∈ ω (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) |
20 | 16, 19 | eqtri 2782 |
. . . 4
⊢ ((∅
Sat ∅)‘ω) = ∪ 𝑛 ∈ ω (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) |
21 | 20 | dmeqi 5745 |
. . 3
⊢ dom
((∅ Sat ∅)‘ω) = dom ∪
𝑛 ∈ ω
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) |
22 | | dmiun 5754 |
. . 3
⊢ dom
∪ 𝑛 ∈ ω (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) = ∪ 𝑛 ∈ ω dom (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) |
23 | | elelsuc 6242 |
. . . . . 6
⊢ (𝑛 ∈ ω → 𝑛 ∈ suc
ω) |
24 | | fmlafv 32859 |
. . . . . 6
⊢ (𝑛 ∈ suc ω →
(Fmla‘𝑛) = dom
((∅ Sat ∅)‘𝑛)) |
25 | 23, 24 | syl 17 |
. . . . 5
⊢ (𝑛 ∈ ω →
(Fmla‘𝑛) = dom
((∅ Sat ∅)‘𝑛)) |
26 | | satf0sucom 32852 |
. . . . . . 7
⊢ (𝑛 ∈ suc ω →
((∅ Sat ∅)‘𝑛) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛)) |
27 | 23, 26 | syl 17 |
. . . . . 6
⊢ (𝑛 ∈ ω → ((∅
Sat ∅)‘𝑛) =
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛)) |
28 | 27 | dmeqd 5746 |
. . . . 5
⊢ (𝑛 ∈ ω → dom
((∅ Sat ∅)‘𝑛) = dom (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛)) |
29 | 25, 28 | eqtr2d 2795 |
. . . 4
⊢ (𝑛 ∈ ω → dom
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) = (Fmla‘𝑛)) |
30 | 29 | iuneq2i 4905 |
. . 3
⊢ ∪ 𝑛 ∈ ω dom (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑛) = ∪ 𝑛 ∈ ω
(Fmla‘𝑛) |
31 | 21, 22, 30 | 3eqtri 2786 |
. 2
⊢ dom
((∅ Sat ∅)‘ω) = ∪
𝑛 ∈ ω
(Fmla‘𝑛) |
32 | 2, 13, 31 | 3eqtri 2786 |
1
⊢
(Fmla‘ω) = ∪ 𝑛 ∈ ω
(Fmla‘𝑛) |